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Abstract

We attempt to recover a function of unknown smoothness from noisy, sampled

data. We introduce a procedure, SureShrink, which suppresses noise by thresholding

the empirical wavelet coe�cients. The thresholding is adaptive: a threshold level

is assigned to each dyadic resolution level by the principle of minimizing the Stein

Unbiased Estimate of Risk (Sure) for threshold estimates. The computational e�ort

of the overall procedure is order N � log(N) as a function of the sample size N .

SureShrink is smoothness-adaptive: if the unknown function contains jumps, the

reconstruction (essentially) does also; if the unknown function has a smooth piece,

the reconstruction is (essentially) as smooth as the mother wavelet will allow. The

procedure is in a sense optimally smoothness-adaptive: it is near-minimax simulta-

neously over a whole interval of the Besov scale; the size of this interval depends on

the choice of mother wavelet. We know from a previous paper by the authors that

traditional smoothing methods { kernels, splines, and orthogonal series estimates {

even with optimal choices of the smoothing parameter, would be unable to perform

in a near-minimax way over many spaces in the Besov scale.

Examples of SureShrink are given: the advantages of the method are particu-

larly evident when the underlying function has jump discontinuities on a smooth

background.
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1 Introduction

Suppose we are given N noisy samples of a function f :

yi = f(ti) + zi; i = 1; : : : ; N; (1)

with ti = (i� 1)=N , zi iid N(0; �2). Our goal is to estimate the vector f = (f(ti))
N
i=1 with

small mean-squared-error, i.e. to �nd an estimate f̂ depending on y1; : : : ; yN with small

risk R(f̂ ; f) = N
�1 � Ejjf̂ � f jj22 = EAvei(f̂(ti)� f(ti))

2.

In order to develop a nontrivial theory, one usually speci�es some �xed class F of

functions to which f is supposed to belong. Then one may seek an estimator f̂ attaining

the minimax risk R(N;F) = inf
f̂
supf R(f̂ ; f).

2



This approach has led to many theoretical developments which are of considerable

interest: Stone (1982), Nussbaum (1985), Nemirovskii, Polyak, and Tsybakov (1985), ...

But from a practical point of view, it has the di�culty that it rarely corresponds with the

usual situation where one is given data, but no knowledge of an a priori class F .
To repair this di�culty, one may suppose that F is an unknown member of a scale

of function classes, and may attempt to behave in a way that is simultaneously near-

minimax across the entire scale. An example is the L2-Sobolev scale, a set of function

classes indexed by parameters m (degree of di�erentiability) and C (quantitative limit on

the m-th derivative):

W
m
2 (C) = ff : jj

d
m

dt
m
f jj2 � Cg:

Work of Efroimovich and Pinsker (1984) and Nussbaum and Golubev (1990), for example,

shows how to construct estimates which are simultaneously minimax over a whole range of

m and C. Those methods perform asymptotically as well when m and C are unknown as

they would if these quantities were known.

Such results are limited to the case of L2 smoothness measures. There are many other

scales of function spaces, such as the Sobolev spaces

W
m
p (C) = ff : jj

d
m

dt
m
f jjp � Cg:

If p < 2, linear methods cannot attain the optimal rate of convergence over such a class when

m and C are known (Nemirovskii, 1985), (Donoho and Johnstone, 1992a). Thus, adaptive

linear methods cannot attain the optimal rate of convergence either. If one admits that

not only the degree but also the type of smoothness are unknown, then it is not known

how to estimate smooth functions adaptively.

In Section 2 we introduce a method, SureShrink, which is very simple to implement and

attains much broader adaptivity properties than previously proposed methods. It is based

on new results in multivariate normal decision theory which are interesting in their own

right.

SureShrink has the following ingredients:

1. Discrete Wavelet Transform of Noisy Data. The N noisy data are transformed via

the discrete wavelet transform, to obtain N noisy wavelet coe�cients (yj;k).

2. Thresholding of Noisy Wavelet Coe�cients. Let �t(y) = sgn(y)(jyj � t)+ denote the

soft threshold which sets to zero data y below t in absolute value, and which pulls other

data towards the origin by an amount t. The wavelet coe�cients yj;k are subjected

to soft thresholding with a level-dependent threshold level t�j .

3. Stein's Unbiased Estimate of Risk for Threshold Choice. The level-dependent thresh-

olds are arrived at by regarding the di�erent resolution levels (di�erent j) of the

wavelet transform as independent multivariate normal estimation problems. Within

one level (�xed j) one has data yj;k = wj;k + �zj;k, k = 0; : : : ; 2j � 1 and one wishes

to estimate (wj;k)
2j�1
k=0 . Stein's Unbiased Estimate of Risk for �̂

(t)
k = �t(yj;k) gives an

estimate of the risk for a particular threshold value t; minimizing this in t gives a
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selection of the threshold level for that level j. (A slight modi�cation of this recipe

is employed in case the data vector has a very small `2 norm, in which case the the

Unbiased risk estimate is very noisy and a �xed threshold is employed).

We brie
y describe some examples of the method in action. Figure 1 depicts four

speci�c functions f which we will wavelet-analyze repeatedly in this paper.

(1.a) Blocks. A piecewise constant function, with jumps at f:1; :13; :15; :23; :25; :40; :44; :65,
:76; :78; :81g.

(1.b) Bumps. A sum of bumps
P1

i=1 1hib((t� ti)=si) with locations ti at the same places

as jumps in Blocks; the heights hi and widths si vary; the individual bumps are of

the form b(t) = 1=(1 + t
4).

(1.c) HeaviSine. A sinusoid of period 1 with two jumps, at t1 = :3 and t2 = :72.

(1.d) Doppler. The variable frequency signal f(t) =
q
t(1� t)sin(2� � 1:05

t+:05
).

Precise formulas appear in Table 1. These examples have been chosen to represent various

spatially inhomogeneous phenomena. We regard Blocks as a caricature of the acoustic

impedance of a layered medium in geophysics, and also of a 1-d pro�le along certain images

arising in image processing problems. We regard Bumps as a caricature of spectra arising,

for example, in NMR, Infrared, and Absorption spectroscopy.

Figure 2 displays noisy versions of the same functions. The noise is independent N(0; 1).

Figure 3 displays the outcome of applying SureShrink in this case. The results are qualita-

tively appealing; the reconstructions jump where the true object jumps; the reconstructions

are smooth where the true object is smooth. We emphasize that the same computer pro-

gram, with the same parameters, produced all four reconstructions; no user intervention

was permitted or required. SureShrink is automatically smoothness-adaptive.

Section 3 gives a theoretical result which shows that this smoothness-adaptation is

near-optimal. SureShrink is asymptotically near-minimax over large intervals of the Besov,

Sobolev, and Triebel scales. Its speed of convergence is always the optimum one for what-

ever is the best smoothness condition obeyed by the true function, as long as the optimal

rate is less than some \speed limit" set by the regularity of the wavelet basis. [By using

increasingly high order wavelets (i.e. wavelets with more vanishing moments and more

smoothness) the \speed limit" may be expanded arbitrarily. The cost of such an expansion

is a computational e�ort directly proportional to the smoothness of the wavelet employed.]

Linear methods like kernel, spline, and orthogonal series estimates, even with ideal

choice of bandwidth, are unable to converge at the minimax speed over the members of the

Besov, Sobolev, and Triebel scales involving Lp smoothness measures with p < 2. Thus

SureShrink can achieve advantages over classical methods even at the level of rates. In fact,

such advantages are plainly visible in concrete problems where the object to be recovered

exhibits signi�cant spatial homogeneity. To illustrate this, we give in Figure 4 an example of

what can be accomplished by a representative adaptive linear method. The method applies

the James-Stein shrinker (which may be interpreted as an adaptive linear shrinker, see

Section 4.1 below) to Dyadic Fourier Corona, or \Littlewood-Paley Blocks". The method

is related, as we describe in section 4.2 below, to the proposal of Efroimovich and Pinsker
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(1984). The method has a number of pleasant theoretical properties; it automatically

achieves the minimax rate for linear estimates over large intervals of the Besov, Triebel,

Sobolev, and H�older scales. Nevertheless, Figure 4 shows that this adaptive linear method

performs signi�cantly worse than SureShrink in cases of signi�cant spatial variability. A

small simulation study described in section 5 shows that for N in the range 103 � 104,

SureShrink achieves the same level of performance with N samples that adaptive linear

methods achieve for 2 �N or 4 �N samples.

To avoid possible confusion, we emphasise that the method SureShrink described in

this paper di�ers from variants RiskShrink and VisuShrink discussed in DJ(1992c) and

Donoho, Johnstone, Kerkyacharian and Picard (1993) only in the choice of threshold.

Through use of a data based choice of threshold, SureShrink is more explicitly adaptive

to unknown smoothness and has better large sample mean square error properties. For

further comparative discussion, see Section 5.

2 SureShrink

We now describe in detail the ingredients of our procedure.

2.1 Discrete Wavelet Transform

Suppose we have data y = (yi)
N�1
i=0 , with N = 2n. We consider here a family of Discrete

Wavelet Transforms, indexed by two integer parameters L and M , and one additional

adjective \periodic" or \boundary adjusted". The construction relies heavily on concepts

in Daubechies (1992), Meyer (1990), (1991) and Cohen et. al. (1993). For a �xed value of

M and L we get a matrixW; this matrix yields a vector w of the wavelet coe�cients of y

via|

w =Wy:

For simplicity in exposition, we employ the periodic version: in this case the transform

is exactly orthogonal, so we have the inversion formula y = WTw. Brief comments on

the minor changes needed for the boundary corrected version are made in Section 4.6 of

DJ(1992c).

A crucial detail: the transform is implemented not by matrix multiplication, but by a

sequence of special �nite-length �ltering steps which result in an order O(N) transform.

The choice of wavelet transform is essentially a choice of �lter. See Strang (1989) and

Daubechies (1992).

The vector w has N = 2n elements; it is convenient to index dyadically N � 1 = 2n � 1

of the elements following the scheme

wj;k : j = 0; : : : ; n� 1; k = 0; : : : ; 2j � 1;

the remaining element we label w�1;0. To interpret these coe�cients let Wj;k denote the

(j; k)-th row of W. The inversion formula y =WTw becomes

yi =
X
j;k

wj;kWj;k(i);

5



expressing y as a sum of basis elementsWj;k with coe�cients wj;k.

In the special case L = 0 and M = 0; the transform reduces to the discrete Haar

transform. Then, if j � 0, Wj;k(i) is proportional to 1 for 2
�j
k � i=n < 2�j(k + 1=2) and

�1 for 2�j(k + 1=2) � i=n < 2�j(k + 1). W�1;0 is proportional to the constant function 1.

Thus the wavelet coe�cients measure the di�erences of the function across various scales,

and the function is reconstructed from building blocks of zero-mean localized square waves.

In the case M > 0, the building blocks of the transform are smoother than square

waves. In that case, the vector Wj;k, plotted as a function of i, has a continuous, wiggly,

localized appearance which motivates the label \wavelet". For j and k bounded away from

extreme cases by the condition

L < j << n; 0 << k << 2j; (2)

we have the approximation

p
N �Wj;k(i) � 2j=2 (2jt) t = i=N � k2�j ; (3)

where  is the mother wavelet arising in a wavelet transform on IR, as described in

Daubechies (1988,1992). This approximation improves with increasing N .  is an os-

cillating function of compact support. We therefore speak of Wj;k as being localized to a

spatial interval of size 2�j and to have a frequency near 2j. The basis element Wj;k has

an increasingly smooth visual appearance, the larger the parameter M in the construction

of the matrix W. Daubechies (1988,1992) has shown how the parameter M controls the

smoothness (number of derivatives) of  ; the smoothness is proportional to M .

The vectors Wj;k outside the range of (2) come in two types. First, there are those at

j < L. These no longer resemble dilations of a mother wavelet  , and may no longer be

localized. In fact, they may have support including all of (0,1). They are, qualitatively, low

frequency terms. Second, there are those terms at j � L which have k near the boundaries

0 and 2j . These cases fail to satisfy (3). If the transform is periodized, this is because Wj;k

is actually approximated by dilation of circularly wrapped version of  . If the transform

is boundary-adjusted, this is because the boundary elementWj;k is actually approximated

by a boundary wavelet as de�ned by Cohen et. al. (1993).

Figure 5 displays Wj;k for j = 6, k = 32 (and N = 2048), in four speci�c cases: (1.a)

Haar Wavelet L = 0,M = 0; (1.b) Daubechies D4 Wavelet L = 2,M = 2; (1.c) Coi
et

C3 M = 9; (1.d) Daubechies \Nearly Linear Phase" S8 Wavelet M = 9. The smoother

wavelets have broader support.

The usual displays of wavelet transforms use S. Mallat's idea of Multiresolution Decom-

position (Mallat, 1989bc). This adapts in the present situation as follows. Let x = (xi)
N�1
i=0

be the data; let

VLx =
X
j<L

wj;kWj;k

denote the partial reconstruction from \gross-structure" terms; and, for j � L let

Wjx =
X

0�k<2j
wj;kWj;k
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denote the partial reconstruction from terms at resolution level j, or scale 2�j . Then x

can be recovered from these components via x = VLx +
P

L�j<nWjx, and it is usual to

examine the behavior of the components by displaying the graphs of VLx and of Wjx for

j = L;L + 1; :::; n � 1. In Figure 6, we do this for our 4 functions and the S8 wavelet.

In Figure 7, for contrast we look just at the Blocks and HeaviSine functions to see how

the Haar Transform behaves (Figs. 7.a and 7.b); and how the Daubechies D4 Transform

behaves (Figs. 7.c and 7.d).

A less usual way to display wavelet transforms is to look at the wavelet coe�cients

directly. We do this in Figure 8. The display at level j depicts wj;k by a vertical line of

height proportional to wj;k at horizontal position k=2j . The low-resolution coe�cents at

j < L are not displayed. The coe�cients displayed are those of the S8 wavelet analysis of

the four functions under consideration.

Note the considerable sparsity of the wavelet coe�cient plots. In all of these plots about

1900 coe�cients are displayed, but only a small fraction are nonzero at the resolution of

the 300-Dot-Per-Inch Laser Printer. It is also of interest to note the position of the nonzero

coe�cients, which at high resolution number j cluster around the discontinuities and spatial

inhomogeneities of the function f . This is an instance of the data compression properties

of the wavelet transform. Indeed, the transform preserves the sum of squares, but in the

wavelet coe�cients this sum of squares is concentrated in a much smaller fraction of the

components than in the raw data.

For comparison, we display in Figure 9 the Haar coe�cients of the object; the com-

pression is very pronounced for object Blocks, and in fact better than in the S8 case, but

the compression is not very pronounced for object HeaviSine { much less so than for the

S8-based transform.

2.2 Thresholding of Noisy Wavelet Coe�cients

The orthogonality of the discrete wavelet transform has a fundamental statistical con-

sequence: W transforms white noise into white noise. Hence, if (yj;k) are the wavelet

coe�cients of (yi)
N�1
i=0 collected according to model (1) and wj;k are the wavelet coe�cient

of (f(ti)), then

yj;k = wj;k + zj;k (4)

where zj;k is an i.i.d. N(0; �2) noise sequence. Hence, the wavelet coe�cients of a noisy

sample are themselves just noisy versions of the noiseless wavelet coe�cients.

Moreover,W transforms estimators in one domain into estimators in the other domain,

with isometry of risks. If ŵj;k are estimates of the wavelet coe�cients, then there is an

estimate f̂ of f = (f(ti)) in the other domain obtained by

f̂ =WTŵ;

and the losses obey the Parseval relation

jjŵ �wjj2 = jjf̂ � f jj2:

The connection also goes in the other direction: if f̂ is any estimator of f then ŵ = W f̂

de�nes an estimator with isometric risk.
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The data compression remarks above were meant to create in the reader the mental

picture that most of the coe�cients in a noiseless wavelet transform are e�ectively zero.

Accepting this slogan, one reformulates the problem of recovering f as one of recovering

those few coe�cients of f that are signi�cantly nonzero, against a Gaussian white noise

background.

This motivates the use of a thresholding scheme which \kills" small yj;k and \keeps"

large yj;k. The particular soft thresholding scheme we introduced above is an instance of

this.

Figure 3 has already shown the results such a scheme can provide, in the case of the

S8 Wavelet Transform. To illustrate how this works in the wavelet domain, we display in

Figure (10.c) the Haar transform of a noisy version of Blocks. We also display a thresholded

version of this transform (10.d), as well as the raw data (10.a) and the reconstruction (10.b).

The reconstruction obtained here is by the device of selecting from the noisy wavelet

coe�cients at level j a threshold t�j , and applying this threshold to all the empirical wavelet

coe�cients at level j; the reconstruction is then f̂ = WT ŵ. Obviously, the choice of

threshold t�j is crucial.

2.3 Threshold Selection by SURE

Let � = (�i : i = 1; :::; d) be a d-dimensional vector, and let xi � N(�i; 1) be multivariate

normal observations with that mean vector. Let �̂ = �̂(x) be a particular �xed estimator

of �. Charles Stein (1981) introduced a method for estimating the loss k�̂ � �k2 in an

unbiased fashion. Stein showed that for a nearly arbitrary, nonlinear, biased estimator one

can nevertheless estimate its loss unbiasedly.

Write �̂(x) = x+ g(x), where g = (gi)
d
i=1 is a function from R

d into Rd. Stein showed

that when g(x) is weakly di�erentiable, then

E�k�̂(x)� �k2 = d + E�fkg(x)k2 + 2r � g(x)g; (5)

where r � g �
P

i
@
@xi
gi.

Now consider the soft threshold estimator �̂i
(t) = �t(xi), and apply Stein's result. �̂(t)

is weakly di�erentiable in Stein's sense, and so we get from (5) that the quantity

SURE(t;x) = d� 2 �#fi : jxij � tg+
dX

i=1

(jxij ^ t)2: (6)

is an unbiased estimate of risk: E�k�̂(t)(x)� �k2 = E�SURE(t;x).

Consider using this estimator of risk to select a threshold:

t
S = arg mint�0 SURE(t;x): (7)

Arguing heuristically, one expects that, for large dimension d, a sort of statistical regularity

will set in, the Law of Large Numbers will ensure that SURE is close to the true risk, and

that tS will be almost the optimal threshold for the case at hand. Theory developed later

will show that this hope is justi�ed.
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Computational evidence that tS is a reasonable threshold selector is given in Figure

11. A vector � of dimension d = 128 consists of 16 consecutive 4's, followed by all zeros.

White Gaussian noise of variance 1 was added (11.c). The pro�le of SURE(t) is displayed

in (11.a); it resembles quite closely the actual loss (11.b), which we of course know in this

(arti�cial) example. The SURE principle was used to select a threshold which is applied

to the data resulting in estimate an estimate of the mean vector (11.d). This estimate

is sparse and much less noisy than the raw data (11.c). Note also the shrinkage of the

non-zero part of the signal.

The optimization problem (7) is computationally straightforward. Suppose, without

any loss of generality, that the xi have been reordered in order of increasing jxij. Then on

intervals of t which lie between two values of jxij, SURE(t) is strictly increasing. Therefore
the minimumvalue tS is one of the data values jxij. There are only d such values; when they
have been already arranged in increasing order, the collection of all values SURE(jxij) may

be computed in order O(d) additions and multiplications, with appropriate arrangement

of the calculations. It may cost as much as order O(d log(d)) calculations to arrange the

jxij in order; so the whole e�ort to calculate tS is order O(d log(d)). This is scarcely worse

than the order O(d) calculations required simply to apply thresholding.

2.4 Threshold Selection in Sparse Cases

The SURE principle just described has a serious drawback in situations of extreme sparsity

of the wavelet coe�cients. In such cases, the noise contributed to the SURE pro�le by the

many coordinates at which the signal is zero swamps the information contributed to the

SURE pro�le by the few coordinates where the signal is nonzero. Consequently, SureShrink

employs a Hybrid scheme.

Figure (12.a) depicts results of a small-scale simulation study. A vector � of dimension

d = 1024 contained b� � dc nonzero elements, all of size C. Independent N(0; 1) noise was

added. The SURE estimator tS was applied. Amplitudes C = 3; 5, and 7 were tried, and

sparsities � = f:005; :01; :02(:02):20; :25g were studied. 25 replications were tried at each

parameter combination, and the root mean squared errors were displayed in the Figure.

Evidently, the root MSE does not tend to zero linearly as the sparsity tends to 0. For the

theoretical results of section 3, such behavior would be unacceptable.

In contrast, Figure (12.b) portrays the results of the same experiment, with a \Fixed

Thresholding" estimator �̂F , where the threshold is set to tFd =
q
2 log(d) independent of

the data. The losses tend to be larger than SURE for \dense" situations � >> 0, but much

smaller for � near zero. The rationale for the choice
q
2 log(d) is developed by the authors

thoroughly in [DJ92b].

Figure (12.c) displays the results of applying a hybrid method which we label �̂�, which

is designed to behave like �̂S in dense situations and like �̂F in sparse ones. Its performance

is roughly as desired.

In detail, the Hybrid method works as follows: Let �d = log2(d)
3=2 and de�ne s2d =

d
�1P

i(x
2
i � 1). Let I denote a random subset of half the indices in f1; : : : ; dg and let I 0

denote its complement. Let tSI and tSI 0 denote the minimizers of SURE with respect to the
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respective subsets of indices, only with an additional restriction on the search range:

t
S
I = arg min0�t�tF

d
SURE(t; (xi)i2I);

and similarly for tSI 0. De�ne the estimate

�̂
�(x)i =

8>><
>>:
�tF

d
(xi) s

2
d � �d=

p
d

�tS
I
(xi) i 2 I 0 and s2d > �d=

p
d

�tS
I0
(xi) i 2 I and s2d > �d=

p
d

(8)

In other words, we use one half-sample to estimate the threshold for use with the other

half sample; but unless there is convincing evidence that the signal is non-negligible, we

set the threshold to
q
2 log(d).

This half-sample scheme was developed for the proof of Theorems 3 and 4 below. In

practice, the half-sample aspect of the estimate seems unnecessary. In practice, the simpler

estimator �̂+ derived from

�̂
+(x)i =

(
�tFd

(xi) s
2
d � �d=

p
d

�tS(xi) s
2
d > �d=

p
d

o�ers the same performance bene�ts in simulations. See Figure (12.d).

We now apply this multivariate normal theory in our wavelet setting.

De�nition 1 The term SureShrink refers to the following estimator f̂� of f . Assuming

that N = 2n and that the noise is normalized so that it has standard deviation � = 1, we

set xj = (yj;k)0�k<2j and

ŵ
�
j;k = yj;k; j < L;

ŵ
�
j;k = (��(xj))k L � j < n;

the estimator f̂� derives from this via inverse discrete Wavelet transform.

Note that f̂� is fully automatic, modulo the choice of speci�c wavelet transform. More-

over, with appropriate arrangement of the work, the whole computational e�ort involved

is order O(N log(N)), scarcely worse than linear in the sample size N . Extensive experi-

ence with computations on a Macintosh show that performance is quite reasonable even on

personal computers. The Matlab command SureShrink takes a few seconds to complete on

an array of size N = 4096.

3 Main Result

In this section we investigate the adaptivity of SureShrink to unknown degree of smoothness.

To state our result, we must de�ne Besov spaces. We follow De Vore and Popov (1988). Let

�
(r)
h f denote the r-th di�erence

Pr
k=0

�
r

k

�
(�1)k f(t+kh). The r-th modulus of smoothness

of f in Lp[0; 1] is

wr;p(f ;h) = jj�(r)
h f jjLp[0;1�rh]:

10



The Besov seminorm of index (�; p; q) is de�ned for r > � by

jf jB�
p;q

=

 Z 1

0

 
wr;p(f ;h)

h
�

!q
dh

h

!1=q

if q <1, and by

jf jB�
p;1

= sup
0<h<1

wr;p(f ;h)

h
�

if q = 1. The Besov Ball B�
p;q(C) is then the class of functions f : [0; 1] ! IR satisfying

f 2 L
p[0; 1] and jf jB�

p;q
� C. Standard references on Besov spaces are Peetre (1976) and

Triebel (1983).

This measure of smoothness includes, for various settings (�; p; q), other commonly used

measures. For example let C� denote the H�older class of functions with jf(s) � f(t)j �
cjs � tj� for some c > 0. Then f has for a given m = 0; 1; : : : a distributional derivative

f
(m) satisfying f (m) 2 C

�, 0 < � < 1, if and only if jf jBm+�
1;1

<1. Similarly, with Wm
2 the

L
2 Sobolev space as in the introduction, f 2 Wm

2 i� jf jBm
2;2
<1.

The Besov scale essentially includes other less traditional spaces as well. For example,

the space of functions of Bounded Variation is a superset of B1
1;1 and a subset of B1

1;1.

Similarly, all the Lp-Sobolev spaces Wm
p contain Bm

p;1 and are contained in Bm
p1.

Theorem 1 Let the discrete wavelet analysis correspond to a wavelet  having r null

moments and r continuous derivatives, r > max(1; �). Let the minimax risk be denoted by

R(N ;B�
p;q(C)) = inf

f̂

sup
B�
p;q(C)

R(f̂ ; f):

Then, SureShrink is simultaneously nearly minimax:

sup
B�
p;q(C)

R(f̂�; f) � R(N ;B�
p;q(C)) N !1

for all p; q 2 [1;1], for all C 2 (0;1), and for all �0 < � < r.

In words, this estimator, which \knows nothing" about the a priori degree, type, or

amount of regularity of the object, nevertheless achieves the optimal rate of convergence

which one could attain by knowing such regularity. Over a H�older class, it attains the

optimal rate; over an L
2 Sobolev class it achieves the optimal rate; and over Sobolev

classes with p < 2 it also achieves the optimal rate.

We mentioned in the introduction that no linear estimator achieves the optimal rate

over Lp Sobolev classes; as a result, the modi�cation of SureShrink achieves something that

usual estimates could not, even if the optimal bandwidth were known a priori.

Many other results along these lines could be proved, for other (�; p; q). One particularly

interesting result, because it refers to the Haar Basis, is the following

Theorem 2 Let V(C) denote the class of all functions on the unit interval of Total Vari-

ation � C. Let now f̂
� denote the applicationof SureShrink in the Haar basis. This

\HaarShrink" estimator is simultaneously nearly minimax:

sup
V(C)

R(f̂�; f) � R(N ;V(C)) N !1

for all C 2 (0;1).

11



Again without knowing any a priori limit on the Total Variation, the estimator behaves

essentially as well as one could by knowing this limit. Figure 10 shows the plausibility of

this result.

3.1 Estimation in Sequence Space

Our proof of Theorem 1 uses a method of sequence spaces described in [DJ92a]. The key

idea is to approximate the problem of estimating a function from �nite noisy data by the

problem of estimating an in�nite sequence of wavelet coe�cients contaminated with white

noise.

The heuristic for this replacement is as follows. Due to (3), the empirical wavelet

coe�cient yj;k = wj;k + zj;k, where the discrete wj;k obeys

wj;k �
p
N

Z
f(t) j;k(t)dt

for a certain wavelet j;k(t). In terms of the continuous wavelet coe�cients �j;k =
R
f(t) j;k(t)dt,

then, it is tempting to act as though our observations were actually

p
N � �j;k + zj;k;

or, what is the same thing,

�j;k + �zj;k;

where � = �p
N

and now zj;k is a standard i.i.d. N(0; 1) sequence. Moreover, due to the

Parseval relation kf̂ � fk2 = kŵ �wk2 and the above approximation we are also tempted

to act as if the loss N�1kf̂ � fk22 were the same as k�̂ � �k22.
These (admittedly vague) approximation heuristics lead to the study of the following

sequence space problem. We observe an in�nite sequence of data

yj;k = �j;k + zj;k j � 0; k = 0; : : : ; 2j � 1; (9)

where zj;k are i.i.d. N(0; �2) and � = (�j;k) is unknown. We wish to estimate � with small

squared error loss jj�̂ � �jj22 =
P
(�̂j;k � �j;k)

2. We let �(s; p; q; C) denote the set of all

wavelet coe�cient sequences � = (�j;k) arising from an f 2 B�
p;q(C). Finally we search for

a method �̂ which is simultaneously nearly minimax over a range of �(s; p; q; C).

Suppose we can solve this sequence problem. Under certain conditions on �; p; and q,

this will imply Theorem 1. Speci�cally, if �0 is big enough and the wavelet is of regularity

r > �0, an estimator which is simultaneously near-minimax in the sequence space problem

�0 < � < r may be applied to the empirical wavelet coe�cients in the original problem

under study, and will also be simultaneously near minimax in the original function space

problem. The approximation arguments necessary to establish this correspondence are

discussed in [DJ92a] and for reasons of space we omit them. See also Brown and Low

(1992).
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3.2 Adaptive Estimation over Besov Bodies

The collections �(�; p; q; C) of wavelet expansions � = �(f) arising from functions f 2
B�
p;q(C) are related to certain simpler sets which [DJ92a] call Besov Bodies. These are sets

jj�jjbs
p;q
� C, where

jj�jjbs
p;q

=

0
B@X
j�0

0
B@2js

0
@ X
0�k<2j

j�j;kjp
1
A
1=p
1
CA
q1
CA

1=q

: (10)

Consider the problem of estimating � when it is observed in a Gaussian white noise,

and is known a priori to lie in a certain convex set �s
p;q(C) � f� : jj�jjbs

p;q
� Cg. We often

put for short �s
p;q = �s

p;q(C). The di�culty of estimation in this setting is measured by

the minimax risk

R
�(�; �s

p;q) = inf
�̂

sup
�s
p;q

Ejj�̂ � �jj22 (11)

and the minimax risk among threshold estimates is

R
�
T (�; �

s
p;q) = inf

(tj)
sup
�s
p;q

Ejj�̂(tj) � �jj22 (12)

where �̂(tj) stands for the estimator (�tj(yj;k))j;k. [DJ92a] shows that R
�
T � �(p) �R� � (1 +

o(1)) with, e.g. �(1) � 1:6. Hence threshold estimators are nearly minimax. Furthermore,

[DJ92a] show that the minimax risk and minimax threshold risk over sets �s
p;q(C) is equiv-

alent, to within constants, so that over sets �(�; p; q; C), provided � is large enough, and

we make the calibration s = � + 1=2 � 1=p.

We may construct a SureShrink-style estimator in this problem by applying �� level-

by-level. Let xj = (yj;k=�)
2j�1
k=0 . Then set

�̂
�
j;k(y) = yj;k; j < L; (13)

�̂
�
j;k(y) = � � �̂�(xj) j � L: (14)

This is a particular adaptive threshold estimator.

Theorem 3 Let s > 1=p � 1=2. Then

sup
�s
p;q(C)

E�k�̂� � �k22 � R
�
T (�; �

s
p;q(C))(1 + o(1)) �! 0:

In short, without knowing s; p; q; or C, one obtains results as good asymptotically as if

one did know those parameters. The result is e�ective across an in�nite range of all the

parameters in question. Since the minimax risk is close to the minimax threshold risk, this

solves the problem of adapting across a scale of Besov Bodies.

This theorem, together with the approximation arguments alluded to in section 3.1,

proves Theorems 1 and 2.
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3.3 Adaptive Estimation at a Single Resolution Level

Theorem 3 depends on an analysis of adaptive threshold selection by the SURE principle.

Return to the setup of section 2.3.

Let ~
R(�) denote the ideal threshold risk, which we could achieve with information about

the optimal threshold to use:

~
R(�) = inf

t
d
�1 �

X
i

r(t; �i)

where r(t; �) is the risk E(�t(x) � �)2 in the scalar setting x = � + z, z � N(0; 1). Of

course, we can never hope to actually know the ideal threshold t attaining this expression.

However, the following result says that the adaptive estimator �̂� almost performs as if we

did know this ideal threshold.

Theorem 4 (a) Uniformly in � 2 IRd

d
�1
E�jj�̂� � �jj22 � ~

R(�) + c(log(d))5=2d�1=2:

(b) For any given 
 > 0, uniformly in d�1
P

i �
2
i �

1
3
�dd

�1=2 we have

d
�1
E�jj�̂� � �jj22 � O(d�1(log d)�3=2):

4 Comparison with Adaptive Linear Estimates

We now brie
y explain in an informal fashion why SureShrink may be expected to compare

favorably to adaptive linear estimates.

4.1 Adaptive Linear Estimation via James-Stein

In the multivariate normal setting of Section 2.3, the James-Stein (positive part) estimate

is

�̂
JS
i = c

JS(x) � xi; i = 1; : : : ; d

where the shrinkage coe�cient cJS(x) = (kxk22�(d�2))+=kxk22. Among all linear estimators

�̂ = c � x, the one with smallest risk at � uses the coe�cient

~c(�) = k�k22=(k�k
2
2 + d):

Since � is unknown (it is after all the quantity we are trying to estimate), this linear

shrinker represents an unattainable ideal. From Ekxk22 = k�k22 + d we see the James-Stein

shrinkage coe�cient cJS(x) is essentially an estimate of the ideal shrinkage coe�cient ~c.

In fact,the James-Stein estimate does an extremely good job of approaching this ideal.

Theorem 5 Consider the ideal estimator (not a statistic!) ~�IS(x) = ~c(�)x. For all d > 2,

and for all � 2 Rd

E�jj�̂JS � �jj22 � 2 + E�jj~�IS � �jj22
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We pay a price of at most 2 for using the James-Stein shrinker rather than the ideal

shrinker. In high dimensions d, this price is negligible.

Apply James-Stein in the wavelet domain:

(ŵj;k)0�k<2j = �̂
JS(xj):

Inverting the wavelet transform gives an estimate f̂WJS which we call WaveJS.

A number of nice adaptivity properties of WaveJS follow immediately from Theorem

4. Consider the ideal linear shrinkage estimator (again not a statistic)

( ~wj;k)0�k<2j = ~�WIS(xj);

with inverse wavelet transform ~f ID. Then, as an immediate corollary of Theorem 5, for all

N = 2n, and for all f :

R(f̂WJS
; f) � R(~f ID; f) +

2 log2(N)

N

:

It is not hard to see that for every space in the Besov scale covered by Theorem 1, the

ideal estimator achieves within a constant factor of the minimax risk for linear estimators.

Moreover the minimax risk measured as above behaves like N�r for a certain r 2 [0; 1]. It is

not however, a statistic; the James-Stein estimate is a statistic; and because 4 log2(N)=N =

o(N�r), it follows that f̂WJS achieves the optimal rate of convergence for linear estimates

over the whole Besov scale. This is in fact a better adaptivity result than previously

established for adaptive linear schemes, because it holds over a very broad scale of spaces.

However, theory aside, such an estimate is not very good in practice. Figure 13 gives an

example on the same cases as �gures 1-3. The WaveJS reconstruction is much noisier than

SureShrink. This could be seen in the display of wavelet coe�cients; if in one resolution

level there are signi�cant coe�cients which need to be kept, then the James-Stein estimate

keeps all the coe�cients, incurring a large variance penalty.

To obtain estimators with acceptable performance on spatially variable functions, one

must, like SureShrink adaptively keep large coordinates and kill small ones. An adaptive

linear estimator does not do this, since it operates on coordinates at each level by the same

multiplicative factor.

4.2 Linear Adaptation using Fourier Coronae

Suppose we identify 0 with 1, so that [0; 1] has a circular interpretation. Work by Efroimovich

and Pinsker (1984), and other recent Soviet literature, would consider the use of adaptive

linear estimators based on empirical Fourier Coe�cients (v̂`). One divides the frequency

domain into coronae `i � ` < `i+1, and within each corona, one uses a linear shrinker

f̂` = ci � v̂` `i � ` < `i+1

The weights are chosen adaptively by an analysis of the Fourier coe�cients in the corre-

sponding coronae. Letting vi denote the vector of coe�cients belonging to the i-th corona,

the choice used by Efroimovich and Pinsker is essentially

ci = c
EP (vi) = (jjvijj22 � d)=jjvijj22:
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We propose an adaptive linear scheme which di�ers from the Efroimovich-Pinsker choice

in two ways. First, we propose to use Dyadic coronae `i = 2i+L. Such Dyadic Fourier

Coronae occur frequently in Littlewood-Paley theory: Frazier, Jawerth, and Weiss (1991),

Peetre (1976), Triebel (1983). Second, within each corona, we shrink via the James-Stein

estimate ci = c
JS(vi), which has nicer theoretical properties than the Efroimovich-Pinsker

choice. The estimator we get in this way we shall label LPJS.

LPJS is an adaptive linear estimator. Indeed, from Theorem 5, its risk is at most a term
4 log2(N)

N
worse than an ideal linear estimator ~fLPIS de�ned in the obvious way. This ideal

linear estimator, based on constant shrinkage in Dyadic Coronae, has performance not worse

than a constant factor times the performance of so-called Pinkser weights, and hence we

conclude that, except for constants, LPJS replicates the adaptive-rate advantages of the

Efroimovich-Pinsker choice of coronae. LPJS o�ers advantages the Efroimovich-Pinsker

choice does not. It achieves the optimal rate of linear estimators over a whole range of

L
2-Sobolev, H�older, and Besov spaces. Theoretically, LPJS is a very good adaptive linear

estimator.

However, we have already seen the LPJS reconstructions in Figure 4. The answers

are signi�cantly noisier than what can be obtained by SureShrink. Instead, the result is

comparable to the (disappointing) performance of WaveJS. There is a deeper reason for

the similarity between the LPJS and WaveJS, which derives from the Littlewood-Paley

theory (Frazier, Jawerth, and Weiss, 1991).

5 Discussion

5.1 Simulation Results

A small-scale simulation experiment was conducted to investigate the performance of the

methods we have discussed. For each of the four objects under study, we applied 8 di�erent

methods to noisy versions of the data: SureShrink in the Haar, Db4, C3, and S8 Wavelet

bases, WaveJS in the S8 Wavelet Basis, LPJS, and �nally the procedure RiskShrink [DJ

1992c] using the C3 and S8 wavelet bases (denoted \ThrC3" and \ThrS8"). RiskShrink uses

a �xed threshold chosen to yield minimax performance for mean square error against an

'oracle'. These threshold values are tabulated in [DJ 1992c]. Dyadic sample sizes N = 2n,

from N = 128 to N = 16; 384 were studied.

Sample results are given in Table 2, which reports the root-loss N�1=2kf̂ � fk2 (not its
square). We decided not to report risk (i.e. loss averaged over an ensemble of realizations),

because replications told nearly the same story.

In all examples, there is little quantitative di�erence bewteen the methods at small N .

There is a visual di�erence, however. For large N , SureShrink with the C3 and S8 wavelets

consistently outperforms the linear adaptive shrinkers, obtaining equivalent precisions with

half or less than half the sample size. The most extreme case is object Blocks, where

the performance of shrinkage in the Haar basis at sample size 1024 is comparable to the

performance of LPJS at sample size 8192. The results for SureShrink and RiskShrink are

remarkably similar here.
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5.2 Visual Quality of Reconstruction

The reader may have noticed that SureShrink reconstructions contain structure at all scales.

This is inherent in the method, which has no a priori knowledge about the smoothness (or

lack of smoothness) of the object. Occasional spurious �ne scale structure must sneak

into the reconstruction; otherwise the method would not be able to adapt spatially to true

�ne-scale structure.

Some readers may be actually annoyed at the tendency of SureShrink to show a small

amount of spurious �ne-scale structure, and will demand a more thorough explanation.

The presence of this �ne-scale structure is demanded by the task of minimizing the `2

norm loss, which always involves a tradeo� between noise and bias. The `2 norm balances

these in equilibrium, which insures that some noise artifacts will be visible.

Enhanced visual quality can be obtained by keeping the noise term in the tradeo� to a

minimum. This may be obtained by uniformly applying the threshold
q
2 log(N) without

any adaptive selection. This ensures that essentially all \pure noise" wavelet coe�cients (i.e.

coe�cients where wj;k = 0) are set to zero by the thresholding. The resulting curve shows

most of the structure and very little noise. Further discussion of threshold selection by theq
2 log(N) rule (called VisuShrink and the connection with optimum \Visual Quality" may

be found in [DJ92b].

5.3 Hard Thresholding

Many persons have asked us if it would be possible to use \Hard Thresholding"

�t(y) =

(
y jyj � t

0 jyj < t

in place of soft thresholding �t. Indeed, Hard thresholding seems more natural to non-

statisticians. We prefer soft thresholding because of various statistical advantages (conti-

nuity of the rule; simplicity of the SURE formula). However, in principle, the results above

could have equally well been derived for Hard Thresholding. A more complicated SURE

formula would be required to implement the idea on data. The proofs would also be more

complicated. The resulting estimator might be called WaveChop.

5.4 Estimated Noise Level

For practical use, it is important to estimate the noise level � from the data rather than

to assume that the noise level is known. In practice we derive an estimate from the �nest

scale empirical wavelet coe�cients: �̂ = Median(jyn�1;kj : 0 � k < 2n�1). We believe

it is important to use a robust estimator like the median, in case the �ne scale wavelet

coe�cients contain a small proportion of strong \signals" mixed in with \noise".

5.5 Other Literature

We have not compared our results here with the considerable literature on the use of Cross-

Validation to select bandwidth of �xed-kernel smoothers; compare Johnstone and Hall
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(1992) and the many references there. Nor have we discussed earlier applications of SURE

with linear estimates; compare Li (1986) and references there. Finally we have not discussed

applications of wavelet thresholding in Density Estimation { Johnstone, Kerkyacharian,

Picard (1992). All of these are interesting topics which we have omitted for reasons of

space.

6 Appendix: Proofs of Theorems 3, 4 and 5

We proceed in reverse: �rst collecting tools, then establishing Theorem 4 and �nally re-

turning to Theorem 3.

Exponential inequalities. We �rst recall two basic exponential inequalities for bounded

variates from Hoe�ding (1962); and note a corresponding inequality for chi-square variates:

A) Let Y1; � � � ; Yn be independent, ai � Yi � bi, and �
Yn = n

�1Pn
1 Yi and � = E

�
Yn. For

t > 0,

Pfj�Yn � �j � tg � 2 expf�2n2t2=
nX
1

(bi � ai)
2g: (15)

B) Let X1; � � � ;Xm be sampled without replacement from fc1; � � � ; cng: Suppose that

a � ci � b for all i. Set �
Xm = m

�1Pm
1 Xi and � = n

�1Pn
1 ci. For t > 0,

Pfj �Xm � �j � tg � 2 expf�2nt2=(b � a)2g: (16)

C1) Let Z1; : : : ; Zn be i.i.d N(0; 1). Then by elementary arguments,

Pfj��j(z2j � 1)j > tg � 2e2s
2��2j�jsjt for jsj � 1=(4max (j�jj)):

C2) If all �j = n
�1, then by optimising over s,

Pfjn�1
X

(z2j � 1)j > tg � 2e�nt(t^1)=8: (17)

Preparatory Propositions. We use (A) to bound the deviation of the unbiased risk estimate

6 from its expectation. To recapitulate the setting of Section 2.3, suppose xi � N(�i; 1); i =

1; � � � ; d are independent. Let Fd denote the empirical distribution function of f�ig. As

above, let r(t; �i) = E[�t(xi) � �i]
2 denote the mean squared error of the soft threshold

estimate of a single co-ordinate, and de�ne

r(t; F ) =

Z
r(t; �)F (d�):

In particular

r(t; Fd) = d
�1�r(t; �i) = d

�1
E�jj�̂(t) � �jj2: (18)

Stein's unbiased risk estimate 6,

Ud(t) = d
�1 SURE (t;x) (19)

= 1 � 2d�1
X
i

Ifx2i � t
2g+ d

�1
X
i

x
2
i ^ t

2 (20)

= d
�1
X
i

1 � 2Ifx2i � t
2g+ x

2
i ^ t

2
; (21)
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has expectation r(t; Fd). We study the deviation

Zd(t) = Ud(t)� r(t; Fd)

uniformly for 0 � t � td =
p
2 log d:

Proposition 1 Uniformly in � 2 IRd,

E� sup
0�t�td

jUd(t)� r(t; Fd)j = O

 
log3=2 d

d
1=2

!
:

Proof: Combining (18) and (19) with the bound r(t; �i) � 1 + t
2, we can write Zd(t) =

d
�1Pd

1 Yi(t) with zero mean summands that are uniformly bounded: jYi(t)j � 2 + t
2.

Hoe�ding's inequality (15) gives, for a �xed t, and (for now) arbitrary rd > 1;

PfjZd(t)j � rdd
�1=2g � 2 expf�r2d=2(t

2 + 2)2g: (22)

For distinct t < t
0, let Nd(t; t

0) = #fi : t < jxij � t
0g.

Ud(t)� Ud(t
0) = 2d�1�Ift2 < x

2
i � t

02g+ d
�1
X
i

x
2
i ^ t

2 � x
2
i ^ t

02

� d
�1(2 + t

02 � t
2)Nd(t; t

0):

We may bound r(t; Fd)� r(t0; Fd) by recalling that for t � td; (@=@t)r(t; Fd) � 5td: Then,

so long as jt� t
0j < �d;

jZd(t)� Zd(t
0)j � 2d�1(1 + �dtd)Nd(t; t

0) + 5�dtd:

Now choose tj = j�d 2 [0; td]: clearly

Ad = fsup
[0;td]

jZd(t)j � 3rdd
�1=2g � Dd [ Ed

where Dd = fsupj jZd(tj)j � rdd
�1=2g and

Ed =

(
sup
j

sup
jt�tjj��d

jZ(t)� Z(tj)j � 2rdd
�1=2

)
:

Choose �d so that �dtd = o(d�1=2); then Ed is contained in

E
0
d = fsup

j

2d�1Nd(tj; tj � �d) � rdd
�1=2g

� fsup
j

d
�1jNd(tj; tj + �d)� ENdj � rdd

�1=2
=3g = E

00
d

say, for large d where we used ENd(tj; tj+�d) � c0d�d = O(rdd
1=2). Again from Hoe�ding's

inequality (15),

Pfd�1jNd(tj; tj + �d)� ENdj � rdd
�1=2

=3g � e
�2r2

d
=9
: (23)
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Finally, using (22), (23) and the cardinality of ftjg,

P (Ad) � P (Dd) + P (E00
d )

� 2td�
�1
d (expf�r2d=2(t

2
d + 2)2g+ expf�2r2d=9g):

Set rd = (2b log d)1=2(t2d + 2) = O(log3=2 d): Then

P (Ad) �
3td

�dd
b
: (24)

Let jjZdjj = supfjZd(t)j : 0 � t � tdg and r�d = (2 log d)1=2(t2d + 2). We may rephrase (24)

as

P�f
p
djjZdjj=r�d > sg � 3td�

�1
d e

�s2 log d
:

which su�ces for the L1 convergence claimed.

Proposition 2 Uniformly in � 2 IRd,

EI jjr(�; FI)� r(�; F )jj1 = 0

 
log3=2 d

d
1=2

!
:

Proof. This is similar to that of Proposition 1, but is simpler and uses Hoe�ding's

inequality (16). In the notation of (16), set n = d; ci = r(t; �i) � 1 + t
2
d; m = d=2; so that

� = r(t; Fd); �Xm = r(t; FI) and

Z(t) := r(t; FI)� r(t; Fd) = �
Xm � �;

PfjZ(t)j > rdd
�1=2g � 2 expf�2r2d=(1 + t

2
d)

2g:

Since j(@=@t)r(t; F )j � 5td for any F , it follows that for jt0 � tj < �d,

jZ(t0)� Z(t)j � 10�dtd:

Thus, if �d is small enough that 10�dtd � rdd
�1=2 and rd = (2b log d)1=2(t2d + 1), then

PfjjZdjj � 2rdd
�1=2g � Pf sup

j:j�d�td
jZd(j�d)j � rdd

�1=2g

�
2td

�d

1

d
4b
:

As for Proposition 1, this yields the result.

Lemma 1 Let xi � N(�i; 1); i = 1; � � � ; d; be independent and s
2
d = d

�1�(x2i � 1); � 2 =

d
�1��2i . Then if �d !1;

sup
�2��dd�1=2

(1 + �
2)Pfs2d � �dd

�1=2g = o(d�1=2): (25)
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Proof.: This is a simple statement about the tails of the non-central chi-squared distribu-

tion. Write xi = zi + �i where zi � N(0; 1). The event in 25 may be rewritten as

Ad = fd�1�(z2i � 1) + d
�1�2�izi � �(� 2 � �dd

�1=2)g (26)

� fd�1�(z2i � 1) � �� 2=3g [ fd�1�2�izi � �� 2=3g = Bd [ Cd

from the lower bound on � 2 in (25).

By elementary inequalities,

P (Cd) = ~�

 
�
2

3

d
1=2

2�

!
� c1e

�c2d�2
: (27)

and it is easily veri�ed that (1 + �
2)e�c2d�

2 � 2e�c2�dd
1=2

= o(d�1=2) for � 2 � �dd
�1=2 and d

large.

For Bd, apply the exponential inequality (17) to obtain

(1 + �
2)P (Bd) � 2(1 + �

2) expf�d� 2(� 2 ^ 3)=72g � c3 expf�c4�2dg = o(d�1=2)

since �d � log d.

Proof of Theorem 4(a). Decompose the risk of �̂� according to the outcome of the pre-test

event Ad = fs2d � �dd
�1=2g, with the goal of showing that

R1d(�) = d
�1
E[jj�� � �jj2; Ad] � c(log d)5=2d�1=2; and (28)

R2d(�) = d
�1
E[jj�� � �jj2; Ac

d] � ~
R(�) + c(log d)5=2d�1=2: (29)

On event Ad, �xed thresholding is used:

R1d = d
�1
E[
X
i

(�(xi; t
F
d )� �i)

2
; Ad]:

If � 2 = d
�1Pd

1 �
2
i � �dd

�1=2, then the oracle inequality of [DJ 92] shows that

R1d � (1 + 2 log d)(d�1 + d
�1�min(1; �2i )) � c(log d)5=2d�1=2:

Conversely, if � 2 � �dd
�1=2

; then we �rst note that on event Ad,

d
�1
X
i

�(xi; t
F
d )

2 � d
�1�x2i � 1 + �dd

�1=2
:

Using Lemma 1, it follows that

R1d � 2(1 + �dd
�1=2 + �

2)P (Ad) = o(d�1=2):

Under either condition on � 2, (28) holds true.

On event Ac
n, the adaptive, half-sample based thresholding applies. Let E� denote

expectation over the distribution of (xi) and EI denote expectation over the random choice

of half sample I. Then

dR2d � EIf
X
i2I

E�[�(Xi; t̂I 0)� �i]
2 +

X
i2I 0

E�[�(Xi; t̂I)� �i]
2
:g
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Let FI , (resp FI 0; Fd) denote the empirical distribution functions of f�i : i 2 Ig (resp of

�i; i 2 I 0; f1; � � � ; dg), and set r(t; F ) =
R
r(t; �)F (d�): Then, using the symmetry between

I and I 0, we have

R2d � 1
2
EIE�fr(t̂I 0; FI) + r(t̂I ; FI 0)g

= EIE�r(t̂I ; FI 0):

Thus, to complete the proof of (29), it su�ces to show that

R3d(�) = EIE�r(t̂I ; FI 0)� ~
R(�) � c(log d)5=2d�1=2: (30)

There is a natural decomposition

R3d = E�EI [r(t̂I ; FI 0)� r(t̂I ; FI)] + E�EI [r(t̂I; FI)� rmin(FI)] + EI [rmin(FI)� rmin(Fd)];

= S1d + S2d + S3d;

where we have set rmin(F ) = inffr(t; F ); 0 � t � t
F
d g and note that rmin(Fd) = ~

R(�). We

use

r(t; FI)� r(t; Fd) =
1
2
[r(t; FI)� r(t; FI 0)] (31)

together with the simple observation that jrmin(F ) � rmin(G)j � jjr(�; F ) � r(�; G)jj1 to

conclude that

S1d + S3d � 3EI jjr(�; FI)� r(�; Fd)jj1 = O

 
log3=2 d

d
1=2

!

using Proposition 2.

Finally, let Ud=2(t; I) denote the unbiased risk estimate derived from subset I. Then,

using Proposition 1

S2d � E�EI jr(t̂I; FI)� Ud=2(t̂I ; I)j+ jUd=2(t̂I ; I)� rmin(FI)j

� 2EIE�jjr(�; FI)� Ud=2(�; I)jj1 = o

 
log3=2 d

d
1=2

!
:

Putting all together, we obtain (30).

Proof of Theorem 4(b). When jj�jj is small, the pretest of s2d � �dd
�1=2 will with high prob-

ability lead to use of the �xed threshold tFd . The O(d
�1=2 log5=2 d) error term in Theorem

4, which arises from empirical process 
uctuations connected with minimization of SURE,

is then not germane, and can be improved to O(d�1).

We decompose the risk of �� as in (28) and (29), but now P (Ad) % 1 as d % 1. On

Ad, �xed thresholding is used and we exploit the inequalities

r(t; �) � r(t; 0) + �
2

r(t; 0) � 4�(t)t�3(1 + 3
2
t
2)

proved in [DJ 1992c] to conclude that

dR1d �
dX
1

r(tFd ; �i) � dr(t; 0) + jj�jj2

� (log d)�3=2 + jj�jj2
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for large d.

We use large derivations inequalities to bound the remaining termR2d. Using symmetry

between I and I 0

dR2d � 2EI

X
i2I 0

E�f(�(Xi; t̂I)� �i)
2
; A

c
dg:

Using the Cauchy-Schwartz inequality and noting from the limited translation structure of

�(�; t) that E�(� � �)4 � c(tFd )
4, we get

dR2d � cd(tFd )
2
P�(A

c
d)

1=2
:

Arguing similarly to (26), we note that the hypothesised bound on � implies that

A
c
d � fd�1

X
(z2i � 1) > �dd

�1=2
=3g [ fd�1

X
2�izi > �dd

�1=2
=3g = Bd [ Cd:

The chisquare exponential inequality (17) and standard Gaussian inequalities give

P (Bd) � expf� log2 d=72g;
P (Cd) � expf��dd1=2=24g

which imply that d log d:Pd(A
c
d)

1=2 = o(log�3=2) which shows negligibility of R2d and com-

pletes the proof.

Proof of Theorem 3. We make use of the de�nitions (13) and (14) to write

E�jj�̂� � �jj2 = 2L�2 + �
2
X
j>L

Ejj�̂�(xj)� �jjj2

where �j = (�jk) = (�jk=�) and �j = (�jk). For a j0 = j0(�; �; p; q) % 1 to be speci�ed

below, we use Theorem 4(a) for levels j � j0 and Theorem 4(b) for j > j0:

E�jj�̂� � �jj2 � O(�2) + S1� + S2�;

S1� � �
2
X
j�j0

(
inf
tj

X
k

r(tj; �jk) + cj
5=22j=2

)

S2� � �
2
X
j>j0

�
jj�jjj2 + cj

�3
2

�
=
X
j>j0

jj�jjj2 + o(�2):

Maximizing now over �s
p;q;

sup
�

S1� � sup
�

inf
(tj)

Ejj�̂(tj) � �jj2 + c�
2
j
a
02

j0=2
:

The �rst term on the right side is precisely R
�
T (�;�

s
p;q) � �

2r where r = 2�=(2� + 1),

and so it remains to verify that j0 can be chosen so that all other error terms are o(�2r).

The error term in S1� is negligible if j0 + 2a log j0 � (2=(2� + 1)) log ��2 ! �1. Since

p � 2; s2j = supfjj�jjj2; � 2 �s
p;q(C)g = C

22�5j and so the term S2� � 2�2sj0 is negligible if

j0�(�=s(2�+1)) log ��2 !1. These two requirements on j0 are compatible if s > p
�1�2�1.
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Finally, we note that the use of Theorem 4(b) requires that 2�j jj�j jj2 � 1
3
�2j2

�j=2 for j � j0,

which is guaranteed if

s
2
j = C

22�2sj � �
2 1
3
j
3=22j=2 8j � j0:

This holds if (2s+1=2)j0 � log ��2, which is again compatible with j0 << (2=(2�+1)) log ��2

so long as s > p
�1 � 2�1.

Proof of Theorem 5. We �rst recall that the risk of the positive part James-Stein estimator

is no larger than that of the original James-Stein estimator, ��JS , in which the restriction

that the shrinkage coe�cient be positive is dropped. Then using Stein's (1981) unbiased

estimate of risk, (or, alternatively, Lehmann, 1983, p.300), and Jensen's inequality, we have

for d > 2,

E�jj�̂JS � �jj22 � E�jj��JS � �jj22 = d � (d � 2)2E�jjxjj�22
� d � (d � 2)2=(jj�jj22 + d):

By direct calculation,

E�jj~�IS � �jj22 = jj�jj22=(jj�jj
2
2 + d): (32)

The di�erence of (32) and (32) is thus bounded by (2d � 4)=(jj�jj22 + d) � 2:
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List of Figures

1. Four spatially variable functions. N=2048. Formulas below.

2. Four functions with Gaussian white noise, � = 1, rescaled to have signal-to-noise

ratio, SD(f)=� = 7.

3. SureShrink reconstruction using soft thresholding, Most Nearly SymmetricDaubechies

Wavelet with N = 8, and cuto� L = 5.

4. LPJS reconstruction, de�ned in Section 4.2, with cuto� L = 5.

5. 'typical' rows of the wavelet transform matrix W corresponding to j = 6; k = 32 in

four cases.

6. Mallat's multiresolution decomposition of the four basic functions using the S8 wavelet.

7. Mallat's multiresolution deomposition of Blocks and HeaviSine using the Haar and

D4 wavelets.L = 4.

8. Plot of wavelet coe�cients using S8. Display at level j depicts wjk by a vertical line

of height proportional to wj;k at horizontal position k2
�j .

9. Wavelet coe�cients using the Haar wavelet. Compare amounts of compression with

Figure 8.

10. (b) is SureShrink reconstruction using Haar wavelet, and L = 2. (c) are the raw

wavelet coe�cients of the data, and (d) the same coe�cients after thresholding.

11. Illustration of choice of threshold using SURE(t). See Section 2.3

12. Root mean squared errors for simulated data at varying levels of sparsity when thresh-

old is chosen by a) SURE, b)
p
2 log d, c) and d) two variants of hybrid method,

described, along with the design, in Section 2.4

13. Reconstructions from noisy data using WaveJS, L = 5, S8 wavelet.

Table 1. Formulas for Test Functions

Blocks.

f(t) =
X

hjK(t� tj) K(t) = (1 + sgn(t))=2:

(tj) = (:1; :13; :15; :23; :25; :40; :44; :65; :76; :78; :81)

(hj) = (4; �5; 3; �4; 5; �4:2; 2:1; 4:3; �3:1; 5:1; �4:2)

Bumps.

f(t) =
X

hjK((t� tj)=wj) K(t) = (1 + jtj4)�1:
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(tj) = tBlocks

(hj) = (4; 5; 3; 4; 5; 4:2; 2:1; 4:3; 3:1; 5:1; 4:2)

(wj) = (:005; :005; :006; :01; :01; :03; :01; :01; :005; :008; :005)

HeaviSine.

f(t) = 4 sin 4�t� sgn(t� :3)� sgn(:72 � t):

Doppler.

f(t) =
q
t(1� t) sin(2�(1 + �)=(t+ �)); epsilon = :05:
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