
Minimax Bayes, asymptotic minimax and sparse

wavelet priors

Iain M. Johnstone

Department of Statistics

Stanford University

December 1992
Revised April 1993

Abstract

Pinsker(1980) gave a precise asymptotic evaluation of the minimax mean squared

error of estimation of a signal in Gaussian noise when the signal is known a priori

to lie in a compact ellipsoid in Hilbert space. This `Minimax Bayes' method can

be applied to a variety of global non-parametric estimation settings with parameter

spaces far from ellipsoidal. For example it leads to a theory of exact asymptotic

minimax estimation over norm balls in Besov and Triebel spaces using simple co-

ordinatewise estimators and wavelet bases.

This paper outlines some features of the method common to several applications.

In particular, we derive new results on the exact asymptotic minimax risk over weak

`p- balls in Rn as n ! 1, and also for a class of `local' estimators on the Triebel

scale.

By its very nature, the method reveals the structure of asymptotically least favor-

able distributions. Thus we may simulate `least favorable' sample paths. We illustrate

this for estimation of a signal in Gaussian white noise over norm balls in certain Besov

spaces. In wavelet bases, when p < 2, the least favorable priors are sparse, and the

resulting sample paths strikingly di�erent from those observed in Pinsker's ellipsoidal

setting (p = 2).

Key Words. Minimax Decision theory. Minimax Bayes estimation. Besov, H�older,

Sobolev, Triebel Spaces. Nonlinear Estimation. White Noise Model. Nonparametric re-

gression. Orthonormal Bases of Compactly Supported Wavelets. Threshold rules.
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1 Introduction

The minimax approach to the theory of non-parametric estimation of a function � known

to lie in a �xed set � aims in part to quantify the e�ect of the constraints de�ning � on

the possible quality of estimation of �. Asymptotic approximations in the small noise or

large sample limit are often necessary (e.g. Chentsov (1972), Farrell (1972), Ibragimov and

Hasminskii (1981, 1982) and Stone(1982)).

Often these approximations yield information only on the rate of estimation possible,

and so it was remarkable when Pinsker (1980) was able to identify the exact constant in the

asymptotic minimax risk of estimation of a signal belonging to an ellipsoid in Hilbert space

when observed in Gaussian noise. Subsequently other applications to ellipsoidal constraint

sets were given, for example, by Efroimovich and Pinsker (1981, 1982), Nussbaum (1985),

Johnstone and Silverman (1990) and Golubev and Nussbaum (1990).

This paper describes an extension of Pinsker's method that we have found useful in de-

riving asymptotic minimax risks in a number of distinctly non-ellipsoidal settings suggested

by the use of wavelet bases (cf. Donoho and Johnstone (1990, 1992a).

In addition to outlining the method in skeletal form, this paper has three objectives.

The �rst is to use it to give an exact asymptotic evaluation of the minimax mean squared

error of estimation over weak `p- balls in Rn as the radius rn and noise level �n vary with

n ! 1. The results are relevant for describing the best attainable spatial adaptation by

non-parametric regression estimators over function classes for which approximation at a

given rate is possible. Secondly, we use the method to give a new asymptotic minimax

result for a class of `local' estimators over spaces in the Triebel scale, which includes the

classical Sobolev spaces.

Finally, we present some graphs of the sample paths from numerical approximations to

the least favorable distributions in a white noise estimation problem when � is a Besov

space ��

p;q
(C). Donoho and Johnstone (1992a) determined the asymptotic minimax risk for

such � using the approach outlined here. The graphs illustrate how p acts as an important

shape parameter modifying smoothness and support the heuristic that when p < 2, the

least favorable � correspond to relatively sparse signals (at least when viewed in the wavelet

domain).

2 Minimax risk over ellipsoids

We begin by recalling a special case of Pinsker's result. Consider a homoscedastic Gaussian

sequence model

yi = �i + "zi; zi
i:i:d:� N(0; 1) i = 1; 2; : : : (1)

where it is desired to estimate � = (�i) using squared error loss jj�̂ � �jj2 = P
i(�̂i � �i)

2.

We assume that � = (�i) belongs to the ellipsoid

� = f� : �a2
i
�2
i
� C2g; ai %1:

The model (1) is, for example, the Fourier coe�cient form of the usual signal in white

Gaussian noise model Y (t) =
R
t

o
f(s)ds+"W (t), where W (t) is standard Brownian motion.
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Pinsker gave an exact evaluation of the asymptotic minimax risk for estimation of � as

"! 0 :

R� = R(�; ") = inf
�̂

sup
�2�

Ejj�̂ � �jj2 � sup

(X
i

"2t2
i

"2 + t2
i

: �a2
i
t2
i
� C2

)
(2)

For example, in the common case where � represents a bound on the mean square �th

derivative, if we put ai = i2 and r = 2�=(2� + 1), then (2) gives R� � �rC
2(1�r)"2r as

"! 0; where �r = (2r=2 � r)r(1� r)(r�1). An important building block in Pinsker's proof

is the univariate Bayes risk for estimation of �1 from y1 � N(�1; ") when �1 � F (d�1) : we

write

b(F; ") = inf
�

EFE�1 [�(y1)� �1]
2:

Of course, if F = �t; a centered Gaussian of variance t2, then b(F; ") = "2t2=("2 + t2).

Thus, an equivalent form of (2) is

R� � supf
X
i

b(�ti; ") : t 2 �g: (3)

The right side is an instance of the type of minimax Bayes problem that we shall study.

The in�nite dimensional Gaussian priors � formed by making �i independently distributed

as �ti are not supported on �, but Pinsker shows that it is possible to choose �" ap-

proaching the supremum in (3) as " ! 0 in such a way that �"(�) % 1: Thus Gaussian

priors are asymptotically least favorable, and the corresponding (linear!) estimators are

asymptotically minimax over the ellipsoid �.

3 The Minimax Bayes method

In this section, we highlight elements of Pinsker's approach that seem useful in a variety

of situations. For simplicity, assume a sequence space version of the Gaussian white noise

model, indexed by n = 1; 2; : : ::

yi = �i + "nzi; zi
iid� N(0; 1)

� 2 �n:
(4)

The frequentist minimax risk of a class of estimators �̂n over �n is

R�
n
= R(�n; "n) = inf

�̂2�̂n

sup
�2�n

E�jj�̂ � �jj2: (5)

We consider only squared error loss and exact Gaussian error models in this paper, but

this is not essential to the method.

1�. Minimax Bayes Problem. Let Mn be a collection of prior probability measures on

sequence space: in general Mn will not be supported on �n. An important idea behind

the method is that a judiciously chosen relaxation of the constraints de�ning �n may be
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easier to evaluate, and yet asymptotically equivalent. Thus, consider the Bayes minimax

risk

B�

n
= Bn(Mn; ") = inf

�̂2�̂n

sup
�2Mn

E�E�jj�̂� �jj2: (6)

Assume that (i)Mn contains ��, point mass one at �, for all � 2 �n, (ii)Mn is convex and

(iii) that �̂n is convex. Assumption (i) entails that R�
n
� B�

n
; while (ii) and (iii) permit use

of the minimax theorem (e.g. Sion (1958, Theorem 4.2'), LeCam (1986, p. 16)). Thus,

R�
n
� B�

n
= sup

�2Mn

Bn(�):

where Bn(�) denotes the Bayes risk

Bn(�) = inf
�̂2�̂n

E�E�jj�̂ � �jj2:

2�. Reduction of the Minimax Bayes Problem. In certain cases, there will be a subclass
�Mn �Mn which is as di�cult as Mn, in the sense that

sup
�Mn

Bn(�) = sup
Mn

Bn(�): (7)

while having simpler structure (priors with independent or even i.i.d co-ordinates for ex-

ample). The space �Mn may allow determination of B�

n
up to a single constant, for example

by symmetry or renormalization arguments. A common strategy for establishing (7) is to

construct a mapping for given � 2 Mn to an element �� 2 �Mn that is at least as di�cult

Bn(��) � Bn(�):

3�. Asymptotic equivalence of R�
n
� B�

n
. A standard way to obtain a lower bound for R�

n

is through the minimax theorem and the collection Ln of prior distributions supported on

�n:

R�
n
= sup

�2Ln

B(�):

A heuristic approach to verifying that R�
n
� B�

n
as n!1 is to choose �n 2 �Mn such that

B(�n) � B�

n
, and to form �n = �n(�j�n) 2 Ln. The hope is that the structure of �Mn will

force �n to concentrate asymptotically on �n; speci�cally �n(�n)! 1, and B(�n) � B(�n).

In this case the chain of relations

B(�n) � R�
n
� B�

n
� B(�n) � B(�n) (8)

establishes that R�
n
� B�

n
:

In the �nal section, we present some extra detail on one approach to making the heuristic

ideas of 3� rigorous when there is in fact a family of minimax problems linked by a scale

parameter C.

Remark. Minimax Bayes problems related to (6) have often been considered in the

literature (see for example Hodges and Lehmann (1952), Bickel (1983), Morris (1983) and

the references therein). Recently, Feldman (1991) considered a particular minimax Bayes

problem of the kind also reviewed in Section 4.1 below. The focus here is on their use as a

device in evaluating the frequentist minimax risk over � in (5).
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4 `p-balls in IRn, strong and weak

For this section, we consider the n-dimensional version of model (4), namely y �
Nn(�; "

2I). A simple example of the use of the Minimax Bayes technique lies in the asymp-

totic evaluation of minimax risk over balls in `p norms in IRn. These also form a building

block for the main results on Besov balls in wavelet bases discussed in Donoho and John-

stone (1992a).

We then turn to new results on minimax risk over Marcinkiewicz, or weak `p balls.

The sequence space weak-`p is relevant here as a representation of an approximation space,

namely the collection of all functions on [0; 1] that can be approximated in L2[0; 1] norm

at rate N��, � = 1=p � 1=2, using any one of a number of non-linear approximation

methods: largest wavelet coe�cients, piecewise polynomials or dyadic splines with variable

breakpoints, and rational functions. See for example DeVore (1989). The full range 0 < p <

2 is thus of interest. Minimax risks over weak `p balls are in this way connected to the study

of best attainable spatial adaptation by variable bandwidth estimators ( to be described

in detail elsewhere.) We concentrate here on �nite dimensional analogues in IRn (which

are compact!), as n increases and such that the normalised radius �n = n�1=prn="n ! 0:

Although we allow radius rn and noise level "n to vary freely with n, the calibration of

most interest in function estimation is rn = r; "n = �n�1=2, so that �n = �n1=2�1=p ! 0

when p < 2.

4.1 Strong `p

We discuss this only in outline: to emphasise the steps listed in Section 3, and to collect

consequences for use later in the paper. Fuller details may be found in [DJ 90]. Let

�n;p(r) = f� 2 IRn :
nX
1

j�ijp � rpg:

A convex set of measures containing �n;p(r) is

Mn = f�(d�) : E�
nX
1

j�ijp � rpg;

and a symmetric subset that is as di�cult as Mn is composed of priors that make the

co-ordinates i.i.d. :

�Mn = f� 2 Mn : � = Gn is i:i:d:g
= f� = Gn : EGj�1jp � n�1rpg

For a �xed prior � inM with marginals �i, form the average marginal G = n�1
P
n

1 �i. The

additive structure of the loss function together with concavity of Bayes risk shows that

�� = Gn is harder than � : B(��) � B(�).

The symmetry of �M makes it possible to express B� in terms of a univariate minimax

problem. Let b(F ) = infdfEFE�(d(x) � �)2g denote the Bayes risk of prior F (d�) for

estimating � from x � N(�; 1). Write Fp(�) for the class of probablility measures F on IR

5



with absolute pth moment bounded by � : EF j�jp � �p. Then the corresponding univariate

Bayes risk is

�p(�) = sup
F2Fp(�)

b(F ): (9)

This can be evaluated explicitly for p = 2, and for p < 2 we use a numerical approximation

in Section 6.

The multivariate minimax Bayes risk is obtained from � by independence and rescaling:

B� = n"2�p(�n); �p
n
= n�1(r=")p:

For asymptotic equivalence in the case �n ! �, one chooses a prior F (d�) in (9) that is

near optimal for �(1� �) and sets �n(d�) = F n("�1d�). The law of large numbers ensures

that n�1
P
n

1 j�i="jp P! EF j�jp � �p(1� �)p; so that

�nf� 2 �n;p(rn)g ! 1:

The remaining details of the argument are completed as described in Section 7.

Properties of �p(�) and approximations. When p < 2, as � ! 0,

�p(�) � �p(2 log ��p)1�p=2;

and corresponding asymptotically least favorable priors have the symmetric (and sparse!)

three-point form (c.f. Bickel, 1983)

F = (1� �)�0 + �=2(�� + ���):

Here we assume that a sequence a = a(�) ! 1 is given and that �(�) and �(�) are then

chosen to be solutions of the equations

��p = �p (10)

�(�+ a) = ��(a): (11)

The corresponding Bayes estimators dF (x) = EF [�jx] approximate d(x) = sign(x)�Ifjxj >
�+ ag as � ! 0:

A simple family of non-linear estimators with attractive risk properties is given by (soft)

thresholding

d�(x) = d(x;�) = signx(jxj � �)+:

The threshold minimax risk

��p(t) = inf
�

sup
F

n
EFE�(d�(x)� �)2 : EF j�jp � tp

o

is not much worse then the unrestricted risk:

sup
0<t<1

��p(t)

�p(t)
= �(p) <1 (12)

and, for example, �(1) � 1:6. In addition if we set �(�) =
p
2 log ��p, then the soft

thresholds d�(�) are asymptotically minimax over Fp(�) as � ! 0):
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4.2 Weak `p

Again suppose y � N(0; 1). Consider the Marcinkiewicz, or weak `p ball

�� = ��

n;p
(rn) = f� : k1=pj�j(k) � rn; k = 1; � � � ; ng:

with minimax risk R�
n
= R(��

n;p
(rn); "n) given by (5). A weak `p ball contains the cor-

responding strong `p ball, and by contrast it is not convex for any p < 1. Again, let

�n = n�1=p(rn="n).

Let F�

p
(�) denote the class of probability measures F (d�) on IR whose survivor functions

~F (t) = Ff� : j�j > tg satisfy ~F (�t) � t�p for t � 0. Equivalently, j�j is stochastically
smaller than �X, where X � Pareto(p). The minimax Bayes risk over F�

p
(�) is

��
p
(�) = sup

F2F�

p (�)

b(F ):

Theorem 1 If either (i) p � 2, or (ii) 0 < p < 2, and

("n=rn)
2 log n("n=rn)

p = o((log n)�6=p) (13)

then

R�
n
� n"2

n
��
p
(�n): (14)

Of particular interest is case (ii) with �n ! 0. In this case

R�
n
� 
pn"

2
n
�p
n
(2 log ��p

n
)1�p=2; 
p = 2=(2 � p); (15)

and the soft thresholding rules �̂n with �̂n;i = �d(� ; ��n) and �n =
q
2 log ��pn are asymptot-

ically minimax. An asymptotically least favorable sequence of distributions is obtained by

setting �i = "Wi where the Wi are i.i.d. and W1 is de�ned in terms of a Pareto(p) variable

X by W1 = min(�nX;�n). Here �n and implicitly "n is de�ned from �n and a(�n) ! 1
via equations (10) and (11).

Remarks 1. The minimax risk for a weak `p - ball is asymptotically larger than the

risk for the corresponding strong `p - ball of the same radius by the factor 
p = 2=(2 � p).

The asymptotically least favorable priors di�er in that the atom of mass (1 � ") at 0 for

the `p - ball case is smeared over the interval [�n; �n] (and its re
ection) according to a

scaled Pareto distribution which is the extremal member of the family F�

p
(�). It would be

interesting to explore the extension of these results to the Lorentz spaces `p;q (e.g. Peetre

(1976), Bergh and L�ofstr�om (1976) ), which are intermediate between `p = `p;p and weak

`p = `p;1:

2. Somewhat more speci�c statements than (14) can be made in cases (i) and (ii)

according as �n converges to 1, or to � 2 (0;1) or 0. The results are entirely analogous

to Theorem 5 of [DJ 90].

Following the method of Section 3, we introduce a bounding Bayes minimax problem.

Let tkn = (n=k)1=p; k = 1; : : : ; n; and de�ne the convex set

Mn = f�(d�) : E�n�1
nX
i=1

Ifj�ij > "n�ntkng < t
�p

kn
; 1 � k � ng:
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Since "n�ntkn = rnk
�1=p, point masses at � 2 ��

n;p
(r) automatically belong to Mn and so

R�
n
� B(Mn; �).

To obtain a related set based on i.i.d. priors we write S"F for the measure F scaled by

" (that is, S"F (A) = F ("�1A)) and de�ne

�Mn = f� = (S"F )
n : F 2 F�

p;n
(�n)g

where

F�

p;n
(�) = fF : ~F (�t) � t�p + n�1; 1 � t � n1=pg:

Good behavior at n points quali�es for membership in F�

p;n
(�):

~F (
tkn) � t
�p

kn
; 1 � k � n) ~F 2 F�

p;n
(�): (16)

For a given � 2 �Mn, the i.i.d. measure �� = (ave(�i))
n is less favorable: B(��) � B(�):

Further, �� 2 �Mn from (16) and because membership in Mn depends only on the average

of the marginal distributions of �. Consequently B(Mn; ") = B( �Mn; "):

Using the symmetry of this decision problem and of �Mn, we obtain

B( �Mn; ") = n"2��
p
(�n): (17)

Now de�ne an (asymptotically least favorable) distribution F� 2 F�

p
(�) as follows. Let

� = �(�) and � = �(�) be the solutions to (10) and (11) for a sequence a = a(�) % 1
slowly enough that a = o(�): De�ne a probability measure on IR+ by

F+(d�) = p�p��1�pIf� � � � �gd� + �p��p�f�g; (18)

and let F (d�) = 1
2
F+(d�)+

1
2
F (d�); where F is the re
ection of F+ about 0. Alternatively,

we may say that F+ is the distribution of �Pareto(p) with all mass located beyond �

(totalling �, by (10)) lumped together at �: It is easily veri�ed that

Z
1

0
x2kF�(dx) =

2k

2k � p
�p�2k�p: (19)

Theorem 2 Suppose 0 < p < 2. As �n ! 0

��
p
(�n) = sup

F�

p (�n)

b(F ) � sup
F�

p;n(�n)

b(F ) � 
p�
p

n
(2 log ��p

n
)1�p=2: (20)

(Proofs are collected in the �nal subsection.) Having thus established the asymptotics

of B�

n
, there remains the somewhat tedious task of using Step 3 to verify asymptotic equiv-

alence of R�
n
and B�

n
. Let us note here only that we may de�ne �n by �xing � > 0,

��n = (1� �)�n and making �i i.i.d. �Xi with Xi drawn from F��n. This yields the necessary

asymptotic support property:

Lemma 1 If �p
n
��p(�n)� n�1 log3 n; then �nf� 2 ��

n;p
(rn)g ! 1:
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5 Minimax risks for Besov and Tiebel balls

We begin this section by reviewing some of the results of Donoho and Johnstone (1992a)

as an example of a somewhat more elaborate use of the Minimax Bayes strategy. This lays

the groundwork for generating the pictures of sample paths from near least favorable priors

in the next section. We then give a separate application of the approach for the Triebel

scale.

Consider now an in�nite- dimensional Gaussian sequence estimation problem yI =

�I + "zI, where the index I represents a pair (j; k) with j 2 N and k 2 f0; 1; � � � ; 2j � 1g;
and the zI are i.i.d. N(0; 1). This may be thought of as a wavelet-coe�cient form of the

standard signal in Gaussian noise regression model

Y (t) =

Z
t

0
f(s)ds+ "W (t) 0 � t � 1; (21)

where W (t) is a standard Brownian motion. Thus, for example, �jk =
R 1
0 f jk measures

the frequency content of f at frequencies near 2j at locations near the subinterval Ijk =

[2�jk; 2�j(k + 1)]:

The Besov and Triebel-Lizorkin scales of function spaces on [0; 1] can be de�ned through

convergence conditions on the components of �: De�ne normalized indicator functions

�jk(s) = 2j=2Ijk(s) = 2j=2Ifs 2 Ijkg and

f(t; j) =
X
k

2j��jk�jk(t):

Besov spaces require the Lp(dt) norms of f(�; j) to belong to `q; equivalently

jj�jjq
b�p;q

=
X
j

2sjq(
X
k

j�jkjp)q=p; s = � + 1=2 � 1=p:

The Triebel spaces on the other hand ask for the `q norms of f(t; �) to belong to Lp(dt);

namely

jj�jjp
f�p;q

=

Z 1

0
(
X
j

2sjqj�jkjqIjk)p=q

for further details, see for example, Frazier, Jawerth and Weiss (1991). These scales coincide

if p = q < 1 and contain the Sobolev (f�
p;2) and H}older (b�

1;1
) norms as well as others,

such as the Bump Algebra (b11;1), and (by bracketing between b
1
1;1 and b

1
1;1) Total Variation,

which capture other forms of prior information of scienti�c relevance.

5.1 Besov Balls

The minimax Bayes approach enables exact evaluations of asymptotic minimax risk

R(�; ") = inf
�̂
sup

�2� Ejj�̂ � �jj2 as "! 0 over Besov balls

� = ��

p;q
(C) = f� : jj�jjb�p;q � Cg

for q � p > 0 and � > (1=p � 1=2)+: In particular, we recover (when p = q = 2) the

homoscedastic case of Pinsker's theorem presented in Section 2.
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For the minimax Bayes risk B(M; ") we take

M =MB(�
�

p;q
(C)) = f�(d�) :X

j

2sjq(
X
k

E�j�jkjp)q=p � Cqg (22)

which is convex when q � p.

De�ne the simpler subclass of measures �M as those distributions in M that make

� = (�jk) independent between resolution levels, and furthermore, i.i.d. within levels. For

any given � 2 M, a less favorable �� (in the series that B(��) � B(�)) is constructed by

making �jk i.i.d. within levels, distributed as ��j = avek(�jk), where �jk denotes the (jk)
th

univariate marginal of �. Since membership inM is determined only by average properties

of the univariate marginals of �, it follows that �� 2 M also, and hence B(M; ") = B( �M; ").

Priors in �M have Bayes rules that operate co-ordinatewise: they depend only on the

level of the component: d�;I (y) = dI(yI) when I 2 Ij . Here dI is the univariate Bayes rule
corresponding to the I th marginal of �. Thus the overall risk Ejj�̂� � �jj2 becomes a sum

of univariate Bayes risks for priors �; with multiplicity 2j at the jth level. The moment

condition for �M becomes a Besov norm condition on the pth moments of the univariate �j
and a renormalization argument leads to

B( �M; ") � "2rC2(1�r)
(C"�1) as "! 0; r = 2�=(2� + 1): (23)

where 
 = 
(�; �; p; q) is a positive continuous function of period 1, and


(b) = supf
1X

j=�1

2j�p(tj) :
1X

j=�1

2j�qtq
j
� bqg: (24)

Here � = � + 1=2, and �p(t) is the univariate Bayes minimax risk de�ned at (9): namely

estimate � from x � N(�; 1), when � is distributed as F constrained only by the moment

condition EF j�jp � tp.

Asymptotic equivalence of R�
n
and B�

n
is veri�ed from (40) and (41) after using (23) to

establish (38). We refer to Donoho and Johnstone (1992a) for details.

5.2 Local estimators and the Triebel scale

Exact asymptotic minimax evaluations are not known for the Triebel scale or for the Besov

scale with p < q. We outline here an exact asymptotic minimax result for a restricted class

of estimators in the Triebel scale:

� = ��
p;q
(C) = f� : jj�jjf�p;q � Cg

Further details are given in Section 7.3.

We consider a class of local estimators de�ned in terms of the natural ordering on indices

I : if I = (jk); I 0 = (j0k0) and j > j0, then say that I > I 0 if the interval Ijk � Ij0k0 : Let

A(I) = fI 0 : I 0 < Ig denote the `ancestors' of I, and let F (I) = fIg [ A(I). The notation
yF stands for (yI : I 2 F ). Then the class of local estimators will be

�̂L = f�̂(y) : �̂I(y) = �̂I(yF (I)) 8 I; yg

10



Thus, the I th component of �̂ depends only on observations yI 0 associated with intervals I 0

containing I. This allows for estimators that `borrow strength' from information in data

at coarser resolution levels, but in a manner localized through the containment constraint.

In general the minimax risk

R�
L
= inf

�̂L

sup
�

Ejj�̂ � �jj2 � R�; (25)

although we have seen that in the Besov case with p � q they are asymptotically equivalent.

For a minimax Bayes problem, we take a slightly di�erent choice than (22); namely

M =MT (�
�

p;q
(C)) = f� : E�jj�jjpf�p;q � Cpg:

This is trivially convex, but no longer depends only on the univariate marginals of �; but

rather on the joint distribution of wavelet coe�cients at all levels which are associated with

intervals Ijk containing t.

Let �(d�) be a probability measure on sequences (�0; �1;���). The notation �(j) denotes

initial segments (�0; �1; � � � ; �j): Call a probability measure �(d�) subordinated to � (written

� = S�) if � may be constructed from � via the following recipe. Let Fj�1 = f�j0k0 ; k 2
Ij; j0 < jg, and require that

(i) (�I ; I 2 Ij) are conditionally independent given Fj�1,
(ii) L�(�jkjFj�1) = L�(�jkj�A(jk)),
(iii) L�(�jkj�A(jk) = t(j�1)) = L�(�j j�(j�1) = t(j�1)).

We de�ne
�M = f� 2 M : � is subordinated to some �g:

A key property of subordinated priors � is that the sequence (�j;[2jr])
1

j=0 is distributed

as � for every r 2 [0; 1]: Conversely, given a prior � 2 M, we construct � and then a

subordinated �� 2 �M by introducing R � U(0; 1) independent of � and setting

�j(�; r) = �j;[2jr]:

This produces � and �� is obtained from recipe (i) { (iii) above.

Consider a (doubly in�nite) auxiliary estimation problem with data vi = �i+"zi; i 2 Z,
and it is desired to estimate �j using estimators �̂j 2 �̂j having the property that �̂j(y)

depends only on y(j) = (� � � ; yj�1; yj): Denote the corresponding Bayes risk

bj(�; ") = inf
�̂j2�̂j

E�E�[�̂j � �j]
2:

Here of course �(d�) is a probability distribution on bilateral sequences (�j; j 2 Z):
One shows that BL(M; ") = BL( �M; ") by using a version of this estimation problem

using data only for i 2 N . The restriction to local estimators in (25) is critical here, as it

forces the Bayes estimator for �� to be local.

Proceeding now in analogy with the Besov case, a renormalization argument shows that

BL( �M; ") � "2rC2(1�r)
L(C"
�1) as "! 0 (26)

11



where


L(b) = supf
1X
�1

2jbj(�; ") : � 2 K(C)g (27)

K(C) = f�(d�) : E�(
X
j

2sjqj�j jq)p=q � Cpg: (28)

We describe the main idea in the asymptotic equivalence argument that R�
L
(") �

BL(M; ") as " ! 0. Construct a near optional solution � to (27) with �j � 0 w:p:1

unless jjj � J , for J su�ciently large. Restrict " to values "h = 2�sh for h su�ciently large.

For h > J , construct 2h�J independent realizations �l from the dyadic prior subordinated

to � (shifted so as to start at 0 rather than �J). `Attach' each realization to the subtree

of indices rooted at (jk) = (h� J; l), for l = 0; 1; � � � 2h�J � 1; and multiply by "h to give a

realization from �h. Under this distribution jj�jjpf�p;q = Ave (Vl; l = 0; 1; � � � ; 2h�J �1) where

(Vl) are i.i.d. with EV1 < Cp, from the construction of �. Thus condition (40) will follow

from the law of large numbers.

Thus R�
L
(") also satis�es the exact asymptotic relation (26). In general, approximate

numerical evaluation of 
L(b) will be more di�cult than for 
(b), because of the multivariate

dependencies involved. Instead, we return in the next section to the Besov case, and

numerical approximation of 
(b).

6 Sample Paths from Priors

As mentioned in the previous section, the dyadic sequence space model is a representation

in suitable wavelet bases of the classical signal in noise regression model (21). The minimax

Bayes approach together with renormalization shows that an asymptotically least favorable

prior distribution may be built from the solution to the optimization problem (24). In this

section we attempt this numerically, in order to exhibit the variety in appearance of sample

paths from these distributions as the parameters of the Besov space vary. In particular the

separate variation in sparsity and smoothness supports the argument that these spaces

capture genuinely di�erent and scienti�cally relevant forms of prior information about the

unknown function.

The basic building block is the univariate problem of estimating � from x � N(�; 1)

with � distributed as F constrained only by the moment condition EF j�jp � tp, as studied

in Section 4. Denote by F p;t(d�) a least favorable prior for this setting. Then a least

favorable prior for

B� = B�(��

p;q
; ") = inf

�̂

sup
�2M

E�E�jj�̂� �jj2 (29)

( when �2 is restricted to a subsequence �2
h
= 2��h) may be constructed as

��|k = "hXj;k j = �|� h; (30)

where (Xj) = (Xj;1; � � �Xj;2j ) is a vector distributed i.i.d. as F p;tj, the vectors f(Xj); j =

�h;�h+1; � � �g are independent and the vector (t�h; � � � ; tj; � � �) is a solution to optimization

problem (24).

12



Sample path realizations from this least favorable prior may be constructed by treating

(�I) as wavelet coe�cients of a random (periodic) function on [0; 1]:

X(t) =
1X
�|=0

2JX
k=1

��|k �|k(t):

Here  �|k(t) = 2�|=2 (2�|t � k) is a suitable orthonormal wavelet basis of regularity at least

�. In fact we will con�ne attention to periodic functions on [0; 1] and work in e�ect with

periodic wavelets (cf. for example, Daubechies (1992, Sec. 9.3)). This computational

simpli�cation a�ects only a �xed number of wavelet coe�cients at each resolution level

and does not alter the qualitative phenomena we wish to present.

We carry out approximate constructions of sample paths for a small selection of values

of p = q and �. For p 6= 2, neither the minimax Bayes risk �p(t) nor the least favorable

distribution F p;t is available explicitly, and so we consider a modi�ed risk ��;p(t) for soft

threshold rules for which a simpler, though still numerical, evaluation is possible.

We begin, however, with Pinsker's case, p = q = 2, in which �2(t) = t2=(1 + t2) and the

least favorable distribution F 2;t = N(0; t2) is Gaussian. In this case, we need only solve for

the least favorable sequence (tj) in

sup

8<
:

1X
j=�1

2jt2
j
=(1 + t2

j
) :

1X
j=�1

2(2�+1)jt2
j
= 1

9=
; (31)

where we have made the approximation of replacing h by �1 in the summations (c.f. [DJ

1992a]). As in Pinsker (1980), the solution has the form

t2
j
= (�02

�(j0�j) � 1)+;

where �0(�) and integer j0(�) are determined to satisfy the equality constraint in (31). In

fact, set a = 2� � 1; b = 1 � 2���1 and c = 1� 2�2��1; then

j0 = d 1

2� + 1
log2

bc

a
e; �0 = b(2�j0(2�+1) + c�1):

For the cases � = 1 and � = 2, Table 1 shows the values of t2
j
and the components of

(31). In particular, there is no contribution for j > 0.

We have chosen the nominal noise level �h = 2��h=2 to be similar in the two cases. For

� = 1, we set h = 8 and �h = 2�6 and for � = 2, we take h = 5 and so h� = 12:5 and

�h = 2�6:25. Figure 1 shows sample paths from these least favorable distributions, namely

X(i=N) =
11X
�|=0

2�|X
k=1

��|kW�|k(i=N) = (WN�)i i = 1; � � � ; N (32)

where ~��|k = X�|�6;k; k = 1; � � � ; 2�| are i.i.d. � N(0; t2�|�6).

Here WN denotes a periodized form of the discrete wavelet transform of length N =

212 = 4096. This is derived from a periodized form of the usual cascade algorithm and a

pair of �nite �lter sequences, as described, for example, in Daubechies (1992, Ch 5). We
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used the N = 8 instance of the \closest to linear phase" Daubechies wavelet (coe�cients

listed in Table 6.3 in Daubechies, 1992), and the speci�c MATLAB code is documented in

[DJT, 1992c].

For p < 2, as previously noted, we consider an approximating minimax Bayes problem

obtained by restricting estimators to soft threshold rules d�(x) = sign x(jxj � �)+. As

noted at (12), the threshold minimax risk is not much worse then the unrestricted risk.

The corresponding bound holds for Besov balls also (DJ 92):

B�

�
(";�) = inf

(�I)
sup

�2M(�)

E�E�jj�̂� � �jj2 � �(p)B�(";�):

We shall therefore use the least favorable distributions for B�

�
(";�) as an approximation

to those for B�(";�), reassured by the bound (12) and the fact that the ratio �p(t)=�p(t)

approaches 1 as t approaches 0 or 1. Thus, for extreme values of t, the least favorable

priors for thresholding are in fact nearly unrestricted least favorable. The renormalization

argument of [DJ 1992a] shows that when "2
h
= 2��h,

B�

�
("h;�

�

pq
) = ("2)2�=2�+1 sup

8<
:

1X
j=�h

2j ��p(tj) :
1X

j=�h

2j�qt
q

j � cq

9=
; (33)

So B�

�
("h;�

s

p;q
) is given by (24) with �p(tj) replaced by ��p(tj). An evaluation of ��p(tj) is

obtained by writing

��p(t) = inf
�

�p(�; t) (34)

�p(�; t) = sup
F

f
Z
r(�; �)dF (�) : F 2 Fp(�)g (35)

Here r(�; �) = E�(d�(x)� �)2 is the univariate threshold risk function. It is shown in [DJ

90] that

�p(�; t) =

(
(1 � "0)r(�; 0) + "0r(�; �0) �0 � t

r(�; t) �0 < t
(36)

where �0 = �0(�; p) maximizes � ! (1 � tp��p)r(�; 0) + tp��pr(�; �) and "0 = "0(�; p; t) =

tp��p0 . The corresponding least favorable priors for (35) are given by

F�0;�0 =

(
(1 � "0) + "0=2(��0 + ���0) �0 � t
1
2
(�t + ��t) �0 � t

:

The function ��p(t) is therefore evaluated by minimizing (36), and from the minimizing

� = �(t) the least favorable prior is the two or three point distribution corresponding

to "0(�(t); p; t) and �0(�(t); p) Numerical values for �p(t) for p = 1 and :5 and t in the

logarithmically spaced grid log10 t = �5(:1)1 are given in Table 1.

This table was used in conjunction with a constrained optimization program (constr in

MATLAB) to obtain solutions to (33) in which the index j in both objective and constraint

sums was restricted to a range [j1; j2].

The function ��p(t) is strictly concave in � = tp, and when p = q, the constraint is linear

in � , so (33) and its �nite sum approximants have unique optima. For p = q = 1; � = 1 and
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p = q = :5; � = 2, optima were computed numerically by decreasing j1 and increasing j2
until either the contribution or total risk became small or the probability "j of the non-zero

atoms ��j became small or both. The adequacy of the approximation is a�ected in part by

the range of t values used in the table look up, and perhaps also by the number of variables

in the constrained optimisation. The results shown in Figure 4 are reasonably satisfactory

for p = q = 1; while for p = q = 1=2 extra levels with j > 4 appear to be needed to give the

total minimax risk �2j�(tj) [For this an extension of the table of ��p(t) to t < 10�5 would

be required]. Note also that to adequately represent a sample path including coe�cients

drawn from the least favorable distribution for these levels we would have to use more than

the N = 4096 points employed in our pictures, shown in Figure 2.

Comparison of the � = 1 plots (corresponding to an MSE of order (�2)2=3) shows that

the case p = q = 1 already exhibits a degree of sparsity in the near least favorable path.

The contrast is clearer in the examples chosen for smoothness � = 2 (corresponding to

MSE of order (�2)4=5): here the case p = q = :5 shows considerable sparsity by comparison

to the ellipsoid case.

Also shown in Figure 3 are plots of the wavelet coe�cients associated with each of the

sample paths. The norm constraint is expressed very di�erently according as p = 2 or

p < 2. For the ellipsoid case, at higher levels, essentially all wavelet coe�cients are present

(with Gaussian distribution of size), but with decreasing magnitude. For p < 2, however,

the coe�cients are increasingly rare (relative to the 2�| possible) as the levels �| increase, but

the size of the non-zero coe�cients does not change so rapidly between levels.

In summary, this small subset of cases already illustrates the variety of forms of prior

information captured by spaces in the Besov scale. This variety adds a degree of suppleness

to minimax analysis of estimators and makes the Besov and Triebel scales attractive for

studying adaptivity properties of estimators.

7 Proofs and Details

7.1 Asymptotic equivalence of R�

n
and B

�

n
.

We suppose that there is in fact a family of minimax problems linked by a scale param-

eter C: let R("n; C) denote the (frequentist) minimax risk over C�n, and B("n; C) the

corresponding minimax Bayes risk.

It is easily shown that the following two conditions entail the equivalence R("n; C) �
B("n; C):

8
 < 1; R("n; C) � 
B("n; 
C)(1 + o(1)); (37)

and

lim inf
"n!0

B("n; 
C)

B("n; C)
! 1 as 
 " 1: (38)

The second condition is often easily checked from the asymptotic evaluation of B("n; C).

Some general comments can be made on the �rst condition which are often useful:

Let �n be any prior distribution with �n(C�n) > 0 and set �n = �n(�jC�n), and let �̂�n
be the Bayes estimator of � for the conditioned prior �n. Then from the de�nitions

B(�n) � E�n

n
jj�̂�n � �jj2jC�n

o
�n(C�n) + E�n

n
jj�̂�n � �jj2; C�c

n

o
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� B(�n)�n(C�n) + 2E�n

n
jj��njj2 + jj�jj2; C�c

N

o
:

Denote by �n the second term in the �nal bound above. For �xed 
 2 (0; 1), choose

�n 2 �Mn so that

B(�n) � 
B("n; 
C) (39)

From (37) and since �n is supported on C�n;


B("n; 
C) � R("n; 
C)�n(C�n) + �n:

In summary, condition (37) (and hence asymptotic equivalence) will follow if priors �n 2
�Mn can be chosen satisfying (39) and

�n(C�n)! 1; (40)

�n = o(B("n; C)) as n!1: (41)

7.2 Proofs for weak `p

We �rst note two immediate consequences of the equations (10 ) and (11) de�ning �(�) and

�(�):

��2 = �p�2�p; �2 � 2 log ��p: (42)

7.2.1 Proof of Theorem 2

Upper bound. Denote the mean squared error of a univariate soft threshold estimate d�
with risk function r(�; �) = E(d�(X) � �)2. Some simple properties of � ! r(�; �) will be

used here without proof { extra details are in [DJ, 1992b].

The minimax risk over F�

p;n
(�) and F�

p
(�) is bounded above by

supf
Z
r(�; �)F (d�) : F 2 F�

p;n
(�)g: (43)

Since � ! r(�; �) is symmetric about 0 and monotone increasing in � to a limit 1 + �2 at

� = 1, the least favorable prior in the optimisation (43) is bounded above by a measure

with density equal to that of �.Pareto(p) for � � � � �n1=p and with point mass 2n�1 at

� =1. Thus

�� �
Z
1

�

r(�; �)dF�+(�) + 2(1 + �2)n�1: (44)

Let us set � = �� =
p
2 log ��p. From (42) we have � � � as � ! 0, and from our

assumption that �p
n
=�p

n
>> n�1 log3 n, we conclude that

�2=n = o(�p�2�p):

Apply integration by parts in (44) and note that (@=@�)r(�; �) = 2�[�(�� �)��(��� �)].
Thus

B� � r(�; �) + 2�pI(�; �) + o(�p�2�p); and (45)

I(�; �) =
Z
1

�

[�(�� �) � �(��� �)]�1�pd�: (46)
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Set �� = ��p2 log �: asymptotics of I(�(�); �) follow easily from

(1� ��1)

Z
�

�

�1�pd� � I(�; �) �
Z
�+

�

�1�pd� + o(�2�p): (47)

Study of the risk function � ! r(�; �) shows that

r(�; �) � r(�; 0) + �2 � c�p��p�(0) + �2 = o(�p): (48)

Finally, inserting (47) and (48) into (45) yields B� � 
p�
p�p

�
(1 + o(1)) as required.

Remark. The upper bound may also be derived using the `oracle inequality' of [DJ

1992d].

Lower Bound. We study F� and the corresponding Bayes estimator d� and proceed to

bound the Bayes risk

b(F�) =
Z
�

�

r(d�; �) p�
p��1�pd� + �r(d�; �): (49)

Let us assume for now the following important and rather remarkable property of the

Winsorized Pareto prior F�:

d�(� + a=2) � 1; � < �0: (50)

The identity d0
�
(x) = VarF (�jx) � 0 along with d�(0) = 0 guarantees that 0 � d�(x) � 1

on the event A� = fx : 0 � x � � + a=2g. This implies 0 � EAd� � 1, where EA denotes

expectation conditional on A�. Bounding mean squared error by squared bias yields

r(d�; �) � P�(A�)E
A(d� � �)2 � s�(� � 1)2 (51)

where s� = inf fP�(A�) : a=2 � � � �g increases to 1 as � decreases. Now substitute (51)

into (49), recall that a = o(�), and conclude that

b(Fn) � s�p=(2 � p)[�p�2�p + o(�p�2�p)] + s���
2 + o(��2):

Appeal now to (42) to derive

b(F�) � 
p�
p�2�p(1 + o(1))

� 
p�
p(2 log ��p)2�p(1 + o(1)):

Derivation of (50). For notational convenience, set x = x� = � + a=2. Expressing d�
explicitly as a posterior mean and neglecting terms gives the bound

d�(x) �
�(x� �)�1�p +

R
�

�
�(x� �)��pd�

p
R
�

�
�(x� �)��p�1d�

: (52)

De�ne

Ir(�) =
Z
�

�

�(x� �)��rd� =
Z
�

�

eh(�)d�=
p
2�;
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where h(�) = �1=2(x � �)2 � r log �. Over the interval [�; �(�)] it attains its only maxima

at the endpoints and there is a single minimum at the smaller root � = � (�) � r=x�
of the quadratic equation obtained from h0(�) = 0: Decompose [�; �] into low and high

subintervals [�; � ] and [� ; �]; and set Ir = IL;r + IH;r. The asymptotic behaviour of these

integrals is given as � ! 0 by

IL;r(�) � �(x�)
Z
�

���rd�; (53)

IH;r(�) � ~�(a=2)��r
�
: (54)

To verify, for example, (54), regard the ratio of the left side over the right as the

expectation of �� = ex���
2
=2 for � distributed as a random variable with density proportional

to ��r on [�; � ]: Then �� is uniformly bounded by the constant er on [�; � ] and converges

to one in probability as � ! 0.

We return to bounding the behavior of d�(x). The �rst ratio in (52) is asymptotically

bounded as � ! 0 via (54) by

�(x� � �)�1�p

�(x�)��p
= �e��a=2 ! 0:

[The equality is obtained after eliminating � from equations (10) and (11).] This same

argument shows that the component IL;p+1 dominates in the denominator integral in (52),

and also dominates IH;p. Thus the second ratio in (52) is asymptotically bounded by

IL;p

pIL;p+1
� �p

Z
�

�

��pd� ! 0 as �! 0:

This completes the veri�cation of (50).

7.2.2 Lemma 1

Proof of Lemma The distribution �n sets �i = "nWi, where Wi are distributed i.i.d.

as F��, de�ned at (18), where �� = (1 � �)�n. The event f� 2 ��g is equivalent to An =

fjW j(k) � tkn�n 8kg, but because of the support bound on L(W ), it is enough to consider

those k for which tkn�n � �(��): Expressing An in terms of the empirical distribution Gn of

jWij, we �nd

An � f(1�Gn)(t�n) � t�p � n�1 for all t�n � �(��)g

For values of t such that t�n � �(��), the distribution of W matches that of U�1=p, where

U � Uniform [0,1]. Consequently

Gn(t�n) = n�1#fi : ��Wi � �ntg
= n�1#fi : Ui � (1� �)pug; u = t�p:
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De�ne v = (1 � �)pu and FU;n for the empirical distribution of n uniform observations.

Then

P (An) � PfFU;n(v) � (1 � �)�pv � n1 8v � (��=�(��))pg
� PfFU;n(v) � 
rv 8v � n�1 log3 ng

for some 
 = 
(�) > 0 from the assumption on �n=�(�n). This last probability converges

to one, as follows from an empirical (uniform) process convergence result for a non-uniform

metric:

sup
0<t<1

�����
p
n(FU;n(v)� v)�W o(v)

v1=2 log v�1

����� P! 0; n!1:

(c.f. Shorack and Wellner, p 140, Theorem 1). Here W o(t) is a standard Brownian bridge

on a common probability space with (Ui).

7.2.3 Completion of Theorem 1

First note that condition (38) follows easily from (17) and (20). It remains to verify

conditions (40) and (41), and we note that it su�ces to take C = 1 (otherwise simply

rede�ne �n by multiplication by C). Condition (40) follows from (13), (42) and Lemma 1.

We now show that �n satis�es (41). Let An = f� 2 ��

n;p
(rn)g andWn = jj�jj2+E[jj�jj2jy]

and observe that �n � E(Wn; A
c

n
). Now using (19), we have

EWn = 2n"2EX2
1 =

4

2� p
n"2�p

n
�2�p
n

� CBn:

and so it su�ces to show that

E

�
Wn

EWn

; Ac

n

�
�
p
VarWn

EWn

+ P (Ac

n
)! 0:

By properties of conditional expectation and (19)

VarWn � 4Var jj�jj2 � 4n"EX4
1 = Cn"4�p

n
�4�p
n

:

Thus
p
VarWn=EWn = (n�p

n
��p
n
)�1=2 ! 0 by (13). This completes the proof of (14).

7.3 Minimax Risk over Triebel bodies, continued

Write the sequence space white noise model in dyadically indexed form

yI = �I + "zI zI
iid� N(0; 1)

where I 2 I = f(j; k); j � 0; k = 0; 1; � � � ; 2j � 1g. This may be thought of as the

expression of the signal-in-Gaussian-white noise model dY (t) = f(t)dt+ "dW (t); t 2 [0; 1],

in an orthonormal basis of wavelets ( I) for L
2[0; 1] such as constructed by Meyer (1991).
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We assume that � is constrained to lie in a ball in a Tiebel-Lizorkin norm:

�s
p;q
(C) = f� : jj�jjp

fsp;q
� Cpg

where

jj�jjp
fsp;q

=
Z 1

0
(
X
j

2sjq
2j�1X
k=0

j�jkjq�jk(r))p=qdr:

Here �jk(r) = Ifk2�j � r < (k +1)2�jg: For further information and background we refer

to (DJ 1992a).

1. Bayes-Minimax problem. LetM =Ms

p;q
(c) consist of all probability measures �(d�) such

that E�jj�jjpfsp;q � Cp. This set is certainly convex and contains point masses in �s
p;q
(C);

but allows arbitrary dependencies among the co-ordinates (�I):

2. Reduction of Bayes-Minimax problem. We use the partial order derived from the obvious

tree structure on I in which a `parent' node I = (jk) gives rise to two daughter nodes at

level j + 1. Formally, for j > j0; I = (j; k) < I 0 = (j0; k0) i� [k2j
0
�j ] = k0. De�ne the

`ancestor' set A(I) of I to be the (linearly ordered) set of I 0 > I. The notation �F denotes

the collection (�I; I 2 F ).
Let �(d ) be a probability measure on sequences ( 0;  1;  2; � � �). The notation  (j) de-

notes initial segments ( 0; � � � j):We will call a probability distribution �(d�) subordinated

to �, (written � = S�), if � may be constructed via the following recipe:

(i) (�jk; k 2 Ij) are conditionally independent given Fj�1 = (�j0;k0; k
0 2 Ij0; j0 < j) and

(ii) L�(�jkjFj�1) = L�(�jkj�A(jk)),
(iii) L�(�jkj�A(jk) = t(j�1)) = Lk( jj (j�1) = t(j�1)):

Finally, de�ne �M = f� 2 M : � is subordinated to some � on IRNg. A key property of

subordinated priors � is that the sequence (�j;[2jr])
1

j=0 is distributed as � for every r 2 [0; 1].

In particular, the function

F (r) =
X
j

2sjq
X
k

j�jkjq�jk(r)

=
X
j

2sjqj�j;[2jr]jq

is identically distributed for each r 2 [0; 1], and

E�jj�jjpfsp;q = E�

Z 1

0
fF (r)gp=qdr (55)

= Ek(
X
j

2sjqj jjq)p=q (56)

Given a prior � 2 M, we construct a subordinated �� 2 �M by the following recipe:

de�ne �(d ) by introducing R � U(0; 1) independent of � and setting

 j(�; r) = �j;[2jr]: (57)
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Now set �� = S�, i.e. construct �� through the recipe (i)-(iii) set out earlier.

That �� 2 �M follows from (55) and (57);

E��jj�jjpfsp;q = E�(
X
j

2sjqj jjq)p=q

= E�

Z 1

0
(
X
j

2sjqj�j;[2jr]jq)p=qdr

= E�jj�jjpfsp;q � Cp:

To show that B(��) � B(�); we introduce an auxiliary estimation problem in which the

data are vi =  i+ "zi; zi
iid� N(0; 1), i 2 N and  (j) = ( 0;  1; � � � j) has prior distribution

�. The Bayes risk for estimation of  j is denoted

b
(0)
j
(�) = inf

 ̂(v(j))

E�E (j)[ ̂(v(j)) �  j]2:

Below we use the notation F (I) = I [ A(I) and �F for the marginal distribution of

(�I)I2F . Using the posterior mean form of the Bayes risk and noting that ignoring variables

yI 0 for I
0 62 F (I) can only increase risk, we �nd

B(�) =
X
I

E�E�[E(�Ijy)� �I ]
2

� X
I

E�F (I)
E�F (I)

[E(�I jyF (I))� �I]
2

=
X
jk

b
(0)
j (�F (jk))

� X
j

2jb
(0)
j
(avek�F (jk)):

where the last inequality uses concavity of Bayes risk.

On the other hand, since ��F (jk) are identical for each k (for �xed j), the right side equals

exactly B0(��).

We use a renormalization argument to determine the "-dependence of B0( �M; "). To

this end, introduce a two sided version of the previous auxiliary estimation problem: vi =

 i+ "zi; zi
iid� N(0; 1) but now with i 2 Z. Let bj(�; ") denote the Bayes risk for estimation

of  j given prior �(d ) and data (vi; i � j). Let K0 and K respectively denote the collection

of probability measures �(d ) on IRN and IRZ satisfying

Jp
spq
(�) =

Z
(
1X
�1

2sjqj jjq)p=qd�( ) � Cp:

We identify K0 as a subset of K in the obvious way by setting  j � 0 for j < 0. In this

way b
(0)
j (�; ") = bj(�; "): Set now

J"(�) =
1X
�1

2jbj(�; ");
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we have B0( �M; ") = val (P";C), where P";C denotes the optimization problem supfJ"(�) :
� 2 K0g. Let Q";C denote the corresponding two-sided optimization over � 2 K :

supfJ"(�) : � on IRZ satis�es Jspq(�) � Cg:
This is asymptotically equivalent to P";C because

val (Q";C)� "2 � val (P";C ) � val (Q";C): (58)

The �rst inequality follows because (i) restricting estimators to depend on (v0; � � � ; vj)
instead of (� � � ; v�1; v0; � � � ; vj) can only increase Bayes risk, and (ii) 2jb(�; ") � 2j"2 which

is summed over j < 0. The second inequality uses the embedding of K0 in K.
If ( j) � �, Let Sa;h� denote the distribution of the scaled and shifted sequence

(a j�h); a > 0; h 2 Z. From the transformation relations

J"(Sa;h�) = a�2Ja"(�); Jspq(Sa;h�) = a2hsJsqp(�);

it follows that v(";C) = val (Q";C) satis�es

v(";C) = "22hv(1; C"�12�sh) h 2 Z:

Choose h 2 Z and � 2 [0; 1] so that s�1 logC"�1 = h+ �; i.e. C"�1 = 2sh2s�: Then

v(";C) = "2�1=sC1=s2��v(1; 2s�)

Combining this with the bounds provided by (58), we have

B0( �M; ") = "2rC2(1�r)
(C"�1)(1 + o(1)) (59)

where 
(�) = 
(�; s; p; q) is a continuous periodic function of � and hence C"�1.

Asymptotic Equivalence. We use the conditions developed in Section 7.1. The expansion

(59) for B0( �M; "), together with continuity of the periodic function 
, establishes (38) and

combined with monotonicity in " of R(";C), shows that it su�ces to verify (37) on dyadic

subsequences of the form "h = 2�s�02�sh as h 2 N %1 with �0 remaining �xed.

Let us construct `near-optimal' priors ��"h 2 �M which satisfy conditions (40) and (41).

Fix �, and choose J;M and �0 and a distribution �(d ) in K such that

a)  j � 0 w.p. 1 unless jjj � J ,

b) j jj �M w. p. 1. if jjj � J ,

c)
P
J

�J
2jbj(�; 1) � v(1; C)(1� �);

d) E�(
P
J

�J
2sjqj jjq)p=q � Cp(1 � �0).

For h > J , construct 2h�J independent realizations �(l) = (�
(l)

j;k
; jk 2 I) from the dyadic

prior measure subordinated to T1;J�. The prior �"h is obtained by `attaching' each of these

replicas as `trees' rooted at (h� J; l); l = 0; � � � ; 2h�J � 1. Speci�cally

�jk := "h�
(l)

j�(h�J);k0
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where k0 is such that k = l2j�(h�J) + k0.

The point of this construction is that

jj�jjp
fsp;q

=

Z 1

0
(
h+JX
j=h�J

2sjqj�j;[2jt]jq)p=qdt

= Ave (Vl; l = 0; � � � ; 2h�J � 1);

where Vl are i.i.d. copies distributed as

V1 =

Z 1

0
(
JX
�J

2sjqj�j;[2j+J t]jq)p=qdt:

Since �j+J;[2j+J t]; jjj � J)
D
= ( j; jjj � J; ), EV1 = E(

P
J

�J
; 2sjqj jjq)p=q � Cp(1 � �0);

condition (40) follows from the law of large numbers:

�"h(jj�jjfsp;q � C)! 1:

To verify condition (41), �rst note that the bound on the support of  j ensures that

j��n;jkj = jE�n(�jkjy)j �M"h;

so that

jj��njj2 + jj�jj2 � 2M2"2
h

h+JX
h�J

2j � 2h"2
h
= "2r

h
:

Consequently, in the notation of section 7.1, since B("h; C) � "2r
h
as h!1

�h=B("h; C) � c"2r
h
�h(C�

c)="2r
h
! 0

which establishes condition (41) and hence the required asymptotic equivalence.
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Captions

Table 1

j index in renormalized problem (24)

�| = j + h resolution level in �gures

tj constraint on p-th moment in j-th level (cf. (24) ). In ellipsoid case,

same as standard deviation of level j prior. (standardised with noise

level � = 1).

2j�qt
q

j
contribution of this level to constraint (since c = 1, these are

percentages.)

�p(tj) For p = 2, equals ellipsoid Bayes risk, for p < 2, equals thresholding

Bayes risk ��p for the least favorable prior (note, lies in [0; 1]).

2j�p(tj) contribution of this level to total Bayes risk.

(�j; �j) for p < 2, size and location (in the standardised case � = 1 ) of non-zero

atom in least favorable three point distribution for level j.

Ej equals 2j�j, the expected number of non-zero coe�cients at the jth

level. (compare Figure 3).

Figure 1: Sample paths from least favorable priors in the ellipsoidal case, solving (31)

for the indicated parameter values. The corresponding noise level is "2
h
= 2��h, which

equals either 2�12 or 2�12:5. Index � measures smoothness, corresponding roughly to the

number of derivatives in the L2 sense. Sample path constructed using (32) from wavelet

coe�cients drawn from Gaussian distributions with standard deviations given in Table 1.

N = 212 = 4096 plotting points. Actual (scaled) wavelet coe�cients shown in Figure 3.

Note that the same pseudo-Gaussian input sequence is used in all plots in Figures 1 and 2

to make the sample paths more readily comparable.

Figure 2: Sample paths from near least favorable priors for two parameter con�g-

urations corresponding to \sparsity". Wavelet coe�cients drawn from the three point

distributions at each level given in Table 1. The sparsity of the signal is apparent for p = 1,

but much more pronounced for p = :5.

Figure 3: Wavelet coe�cients generated from parameters in Table 1. At resolution

level �| there are 2�| coe�cients. Coe�cients are scaled for plotting purposes so that the

largest coe�cient is .9. The parameter h represents the shift from level j in the renormalized

problem to level �| used in producing the plots corresponding to noise level "2 = 2��h.

Figure 4: Graphical representation of the parameters associated with the numerical

solution of the univariate minimax thresholding problem (34) and (35). Solid line corre-

sponds to p = 1, dashed line to p = :5 and dotted line to p = 2. Horizontal axis is Lp
moment constraint �.
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j �| tj 2j�qtq
j

�p(tj) 2j�p(tj) �j �j Ej
p = q = 2; � = 1; � = 1:5; h = 8

-8 0 20.26 0.000 0.998 0.00

-7 1 14.31 0.000 0.995 0.01

-6 2 10.09 0.000 0.990 0.02

-5 3 7.10 0.001 0.981 0.03

-4 4 4.97 0.006 0.961 0.06

-3 5 3.44 0.023 0.922 0.12

-2 6 2.33 0.085 0.844 0.21

-1 7 1.49 0.277 0.689 0.34

0 8 0.78 0.607 0.378 0.38

p = q = 2; � = 2; � = 2:5; h = 5

-5 0 42.66 0.000 0.999 0.03

-4 1 21.31 0.000 0.998 0.06

-3 2 10.62 0.003 0.991 0.12

-2 3 5.24 0.027 0.965 0.24

-1 4 2.47 0.191 0.859 0.43

0 5 0.88 0.778 0.438 0.44

p = q = 1; � = 1; � = 1:5; h = 8

-4 4 1.5849 0.025 0.945 0.06 0.9890 1.60 16

-3 5 1.2589 0.056 0.867 0.11 0.7724 1.63 25

-2 6 0.8423 0.105 0.707 0.18 0.4954 1.70 32

-1 7 0.5346 0.189 0.534 0.27 0.2965 1.81 38

0 8 0.2512 0.251 0.314 0.31 0.1254 2.00 32

1 9 0.0794 0.225 0.127 0.25 0.0341 2.33 18

2 10 0.0158 0.127 0.033 0.13 0.0057 2.78 6

3 11 0.0010 0.023 0.003 0.02 0.0003 3.52 .6

p = q = :5; � = 2; � = 2:5; h = 5

-4 1 0.1980 0.014 0.599 0.04 0.2891 2.37 .5

-3 2 0.1001 0.023 0.485 0.06 0.2020 2.45 .8

-2 3 0.0500 0.039 0.386 0.10 0.1402 2.55 1.1

-1 4 0.0252 0.067 0.304 0.15 0.0977 2.64 1.6

0 5 0.0079 0.089 0.200 0.20 0.0533 2.80 1.7

1 6 0.0032 0.139 0.147 0.28 0.0329 2.92 2.1

2 7 0.0012 0.198 0.098 0.39 0.0200 3.06 2.5

3 8 0.0002 0.209 0.051 0.41 0.0086 3.27 2.3

4 9 0.0000 0.226 0.027 0.43 0.0038 3.48 1.9
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