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Abstract

Density estimation is a commonly used test case for non-parametric estimation
methods. We explore the asymptotic properties of estimators based on thresholding of
empirical wavelet coeflicients. Minimax rates of convergence are studied over a large
range of Besov function classes B;,, and for a range of global L error measures,
1 < p < oo, A single wavelet threshold estimator is asymptotically minimax within
logarithmic terms simultaneously over a range of spaces and error measures. In
particular, when p’ > p, some form of non-linearity is essential, since the minimax
linear estimators are suboptimal by polynomial powers of n. A second approach,
using an approximation of a Gaussian white noise model in a Mallows metric, is used
to attain exactly optimal rates of convergence for quadratic error (p’ = 2).
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1 Introduction

The recent appearance of explicit orthonormal bases based on multiresolution analyses
has exciting implications for non-parametric function estimation. Unlike the traditional
Fourier bases, wavelet bases offer a degree of localisation in space as well as frequency. This
enables development of simple function estimates that respond effectively to discontinuities
and spatially varying degrees of oscillations in a signal, even when the observations are
contaminated by noise.

This paper applies these heuristics in the context of probability density estimation:
estimate a probability density function f(x) on the basis of Xj,..., X,, independent and
identically distributed observations drawn from f. Because of its simple specification, this
important practical problem has also served as one of the basic test situations for the
theory of non-parametric estimation. An overview of traditional methods and a part of the
vast literature on theory and application of density estimation is given by Devroye(1985),
Silverman(1986) and Scott (1992). The first use of wavelet bases for density estimation
appears in papers by Doukhan and Léon (1990), Kerkyacharian and Picard (1992) and
Walter (1990).

Let us suppose that the (inhomogenous) wavelet basis is derived from {¢;, p= 21/2¢(271 x—
k), k € Z} and {;, = 29/%)(2'x — k), k € Z,§ > j1} where é(z) and 1 (z) are the scaling

function and mother wavelet respectively. The probability density f has formal expansion
fla) ~ D agudin(@) + 30 3 Bistbie(w). (1)
k izZn k
Since wavelet estimators are a form of orthogonal series estimate, one begins by forming
empirical wavelet coefficients

G =n" Y Gun(X0) L B =0Tt Y da(X). (2)

The key advantages of wavelet estimators follow from the effects of even very simple
non-linearities involving co-ordinatewise thresholding:

Os(x, N) =sgna(x — Ny, onlx,A) = al{|z] > A}

where the subscripts refer to ’soft’ and ’hard’ thresholding respectively. The estimators we
consider in this paper are obtained by thresholding empirical coefficients:

Bit = 6(Bi. Nj) . 6=8,.6 (3)

along with &; 1 in (1). Here we use either soft or hard thresholding as dictated by technical
convenience — from simulation experience in other contexts, one expects that soft thresh-
olding will have slightly better mean (square) error properties (at the level of constants,
not rates), while hard thresholding will better preserve the visual appearance of peaks and
jumps.

We look at global error measures for estimating the whole density, evaluating the mean
L, error

Bolf. ) = Bllf = 118 = B [ 1fu(2) = f)] da.
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For the most part, we consider 1 < p’ < oo, which includes the important special cases
p’ = 1 and 2, which are of interest respectively for their properties of invariance and
mathematical simplicity. We look at the worst case performance over a variety of functional

Spaces:

Ro(f1F) = sup B[ f, — fII2.
feF

where F will usually be a subset of densities with fixed compact support and bounded
in the norm of one of the Besov spaces Bj,,. Our main point is that the same form of
estimator, based on simple thresholding of the wavelet coefficients, achieves nearly optimal
performance, in terms of rates of convergence over a variety of global error measures and
over a variety of function spaces. Here, near optimality means that the rates are best
possible except possibly for terms logarithmic in sample size. The significance of this
universality of near-optimality is discussed in much greater detail in [DJKP].

Concerning the scale of Besov spaces By,,, for the purposes of this introduction, let
us note only that it includes the traditional norms used in statistical theory, namely the
Hilbert-Sobolev (Hi = B;25) and Holder (C* = B, 00.00,0 < o ¢ N). For more general
Sobolev spaces, and the interesting special case of functions of bounded total variation, we
have the inclusions

Bsp1 CH) C Bspoo » Biaig CTV C By
Nemirovskii, Tsybakov and Polyak (1984) and Nemirovskii (1985) have shown that

over certain spaces in this scale, no linear estimate can attain even the optimal polynomial
rate of convergence. For example, over balls in the total variation norm, and for global
Ly error, the minimax rate among linear estimators is O(n~'/?), whereas the minimax
rate among all estimators is O(n~2/%). Thus the Besov scale includes a sufficiently broad
range of phenomena to make the near optimality results for wavelet thresholding esimators
interesting.

Theorem 2 establishes lower bounds for optimal rates of estimation over B ,,. Two
cases emerge, which we shall call "dense” and "sparse”, according as € = sp — (p' — p)/2 is
> 0 or < 0. The lower bounds are derived by considering perturbations of a fixed density,
where the perturbations are combinations of basis functions drawn from an appropriate
resolution level. The terms dense and sparse refer to the number of basis functions used
to form the perturbation - for example, in the less smooth case when € < 0, a single basis
function is employed. It follows from these lower bounds that when p’ > p linear estimators
cannot achieve the optimal rate of convergence.

To establish upper bounds for specific wavelet threshold estimators, we use two different
approaches. The first consists of a direct evaluation of the L, losses for p’ > p over densities
in By, , with support in a fixed interval. Theorem 3 shows that the estimator TW defined

using thresholds A; = K\/j/7n attains the optimal rate to within logarithmic terms, and
attains the exactly optimal rate in the "sparse” case.

A second approach is based on approximating the density model by a Gaussian white
noise model and then using results for threshold estimators in the white noise model derived
by Donoho and Johnstone (1992). This approach is at present carried out only for quadratic
loss but with appropriate choice of thresholds, it can be used to show that wavelet estima-
tors attain the exactly optimal rate. This is perhaps of interest, since the use of quadratic



loss implies that one is in the "dense” case, for which the first approach does not yield
exactly optimal rates.

The paper concludes with an adaptivity result, Theorem 4, which emphasises that a
single, simple estimator can come within logarithmic terms of optimality simultaneously
over a wide range of L, losses and Besov classes. In fact, one simply uses thresholds

A; = Ky/j/n over a range
nt/(+2r0) < 97 < n/logn

where rg + 1 is the regularity of the wavelet.
Some of the results of this paper were announced without proof in Johnstone, Kerky-

acharian and Picard (1992).

2 Besov Spaces and Wavelets

In this section, we recall definitions and set notation for later use. Some equivalent defi-
nitions of Besov spaces, which shed further light on their relevance to density estimation,
are reviewed in the Appendix.

2.1 Multiresolution analysis and wavelets
Let us recall (cf. Meyer [M]) that one can construct a function ¢ such that:
(1) the sequence {¢(x — k), k € Z} is an orthonormal family of L*(R). Let V; be the

subspace spanned.

(2) Yy € 2, V, C Vjyq if V; denotes the space spanned by {¢;r, k € Z}, where ¢;, =
2024(2 0 — k).

Then we have N;ezV; = {0} and furthermore, if ¢ € L*(R) and [ ¢ = 1, L*(R) = U;ezV;
and ¢ is called the multiscale function of the multiresolution analysis (V});cz. Various
regularity properties can be required of ¢: we shall here assume that

(3) ¢ is of class C", ¢ and every derivative up to order r is rapidly decreasing. In this
case, the analysis is said to be regular .

In fact, we will assume in succeeding sections that in addition, ¢ is compactly supported
in an interval [—A, +A] ( e.g. Daubechies’ families [D]).
Under these conditions, define the space W; by

Vi =V; & W
There exists a function ¢ (the ”wavelet”) such that
(1) {¢(x — k), k € Z} is an orthonormal basis of W.
(2) {wn, k € Z,j € Z} is an orthonormal basis of L%(R), where 1, = 2/ (272 — k).

(3) ¢ has the same regularity properties as ¢.
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In addition, we have the decomposition
Lz(R) = ‘/]0 D Wjo D Wjo-l-l D....

That is, for all f € L*(R),

J=" ajorthior + > > Bt

kezZ Ji>jo kez

where

Qjk :/f(x)md% Bik Z/f(x)mdx.

2.2 Besov spaces

We give here the definition of Besov spaces in terms of wavelet coefficients. This is conve-
nient as it gives a description in terms of sequence spaces.

Let ¢ satisfy conditions (1), (2) and (3) with r > s, let £ be the associated projection
operator onto V;, and D; = E;1; — E;. Besov spaces depend on three parameters s > 0,
1 <p<ooand 1 <¢ < oo and are denoted Biy,. Say that f € B, if and only if

Japg () = 1Eo(|eoimy + (271D, fll o)) T < oo,

J>0
w1 € usual modilication 10r = xX). S1Nng now € decomposition o .
ith th | modification for ¢ Using now the decomposition of

Eof = Y aordor

kezZ

Dif = Y Btk

kezZ

we may also say that f € B,,, if and only if

1/q
Sy (F) = llao ]y, + (Z(Qj(sﬂ/z_l/p)lIﬁywllzp)q) < oo

>0

(we have set [|3;.[;, = (Zyez |BiP)"/7 ).

Note that Sobolev spaces have a different characterisation in terms of sequences (e.g.
[FJ]).

This second definition is equivalent to the previous one as a consequence of the following
lemma (which will also be useful in the sequel).

Lemma 1 (Meyer, [M]) Let g be such that conditions (1) and (3) hold. Let (9(:1;) =0,(x) =
Srez gl — k)|, and [|0]], = (fo |0(x)]Pde)' /. Let f(z) = Ypez M2Pg(2a—k). If
1 <p < oo and p; satisfies 1/p+1/py =1, then

1

WQj(l/Z_l/p)||)\||lp < U1z, < 1101127022 A,
1 )



Remarks. 1. Using the J or J’ norms, the Sobolev embeddings are easily obtained:

Bgpy C By for 8 >s, or =35 and ¢ <gq.
Bgyy C By, for p'>ps'=s—1/p+1/p,

In particular, for s—1/p > 0, By, is included in the space of bounded continuous functions,
and the same is true for s — 1/p > 0 and By, ¢ > 1.

2. Well known particular cases of the Besov spaces include the Hilbertian Sobolev
spaces H® = By, the set of bounded s-Lipschitz functions = Bs.,., and the Zygmund
class Biooeo-

3. We will also need the inclusion (cf. [M], [P,p. 80]): Boyipiaz C Ly,p' > 1, where
By, is defined through the J! = norm by putting s = 0.

spq
4. The spaces of densities we use are defined by

Fopg(M) = {f: /f—1f>07 qu()SM}.

3 Linear estimators

In order to compare the classes of linear and non-linear estimators, we begin first with the
class Cp, of linear estimators, defined by the representation

fu(Xie o Xy 2) = 3 T(Xo ).
1

An important class of examples arises as follows. Let Xi,...,X, be n ii.d. random
variables with common density f and empirical distribution function F,, = n™' "% I[{X; <
x}.Given a function E(x,y), let F;(x,y) = 27 FE(27x,27y), and consider the linear estimator

E](n) = /E](n)(xvy)an(y)

Two cases are of particular interest:

EXz,y) = oz —y) (4)
EXx,y) = kg oz — k)o(y — k). (5)

E* corresponds to the classical kernel estimate and £? to a projection estimator on the space
V; derived from the scale function ¢ of a multiresolution analysis. Linear estimators have
the following distinguishing property. If f, ¢ are two probability densities and « € [0, 1],
then ) ) )
Eopr-aygfr = alyfr, + (1 — a) Ky f.
The following results will show that the rate of convergence of linear procedures may
be strictly slower than that of non-linear ones. This phenomenon is associated with a
difference between the order of integration, p’, in the loss function and the order, p, in the
regularity constraints. It has already been observed in the related context of regression
([N], [DJ2]), and estimation over {,- balls [DJ90]. In the case of density estimation, we
have the following results, beginning first with linear estimators.
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Theorem 1 Let 1 < p,q<o0,p >p, s> 1/p.

RE= it sup  Efllfu — fI[0.
Jn€CL fEFpq(M)
There exist constants C; such that

Cln_% S R£ S CZn_%v
where ' =s—1/p+1/p'.

The corresponding lower bound for non-linear estimators reveals an ‘elbow’ in the rates
of convergence. Let

1 1/ r_
a = min( i ,S /p+ /p) ; ezsp—u. (6)
L4+2s" 142s—2/p 2
We note that
) os/(1+2s) e>0 (1)
] S/ 428 —2/p) e <0.

Theorem 2 Let 1 < p,q<o0,p >p, s> 1/p.

R,=inf sup E||f — fII}.
I fE€Fpg(M)

(the infimum being taken over all estimators (taking their values in a space containing
Fopy(M)). There exists a constant Cs such that

Rn Cg(loﬁ)ap/ c<0

n

>
> Can=? e > 0.

Remarks. 1. As will be shown in the next two sections, the lower bound of Theorem 2 is
sharp, at least in the cases ( p' > p,1 < sp < (p' —p)/2) and (p = 2,5 > 1/p).

2. We note two special phenomena. First, an “elbow” appears in the rate of convergence:
the “usual” rate (s/(1 + 2s)) applies only if s is large enough - in other cases, the rate is
s /(14 2s —2/p). Secondly, a log term appears in the low regularity cases.

3. Comparison with Theorem 1 now shows that linear estimates have sub-optimal rates
of convergence for p' > 2, p<yp', s> 1/p.

ProoF OoF THEOREM 2. We give only a brief sketch, as it is a slight modification of
Nemirovskii’s method to the case of densities. For small s (i.e. € < 0), we consider the set
of vertices of a pyramid

P; = {go £ yYjr, k € K;} for j >0

where ¢y is some infinitely differentiable density satistying go > ¢ for = in the interval

[— A, A] containing the support of ¢ and ¢. Choose M so that J. (go) < M/2 and let

s5pq

K; ={—(2 —1)A+2IA,1=0,...,(2" — 1)}, so that ;5 and t; have disjoint supports
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for k # k'. Finally, in order that P; be included in Fj,,(M), choose v such that 0 < v <
_ O oin Mo ienizmam
1] oo 2

The inequality follows by standard arguments using Fano’s lemma.
For the case of larger s (i.e. € > 0), we consider the set of vertices of a cube

Ci={fe=g0+ Z Yerip, €5 = 1}

[(j;s,p, M)

keK;
with »
0<v< G2 M ymjisryy
[]loe 2

and using now Assouad’s lemma, we obtain the required inequality.

PrROOF OF THEOREM 1. For the lower bound, we present the details of the proof in the
appendix and give on the idea here. The minimax risk is bounded below by the maximum
risk over an ¢, ball at a particular resolution level j. For p’ > p, the least favorable points for
linear estimates over (, balls are “spikes” — such as the elements of a fixed P; as introduced
above (compare [DJ, 1990, Section 8 in the Gaussian case). The lower bound is obtained
by randomizing over the elements of P;.

For the upper bound, it suffices to exhibit an estimator attaining the right rate of
convergence, for example the “linear wavelet estimator” (c.f. [KP 1992a)):

Foi = ap229(2a — k),

kezZ

where &;; = n™' Y1, ¢ (X;). We recall that since ¢ has compact support, the summation
in k is finite, and that ¢ has regularity r > s.

Proposition 1 ([KP 1992a]) For = > 1,0 < r, and f € Fypy (M), if j(n) = [logy(nT7 )],

there exists a constant Cy such that
Ee|[foiny — TlI7 < Can™ 27,

The result is proved in [KP 1992a] for = > 2, but the same argument extends to 7 > 1
(cf. also (23) below). The upper bound in Theorem 1 is now a consequence of Proposition
1 and the Sobolev embeddings (see Section 2) By, C Byiprg for p’ > p,s—1/p=3s—1/p"
in which we take # = p’ and ¢ = s'.

4 Threshold wavelet estimators

Among non-linear estimators, we propose a very special one: a truncated threshold wavelet
estimator. Define empirical coefficients é;x, B as in (2), and employ hard thresholding:

G B 1G] > KOG
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Then the estimator TW associated with the functions jo(n), j1(n),C(j) and K is

TW(x) =Y ajrdjn(e) + i S Binthu(@). (8)

kezZ J1 kez

Before considering the properties of this estimator, we pause for some motivation. The
linear wavelet estimator, LW, (corresponding to jo = j1) is not optimal if p < p'.This
may be explained via the decomposition of the error into bias and stochastic (variance)
components. If LW uses level j(n), it has bias of order 2-1(")s'7" while the stochastic term
is of order (27" /n)P'/2, This leads to the idea of beginning with a low frequency estimator
LW (j1(n)), with ji(n) chosen low enough that the stochastic term has the right rate, and
then to add in certain “details” up to the higher order jo(n) in such a way that the bias
term also has the right order. (It is easily seen that if p’ = p, it suffices to choose jo = j1,
whereas for p’ > p, it is necessary to take jo > j1).

It remains now to choose a way of refining the details, and this is done using a supereffi-
ciency procedure in the spirit of the Hodges-Lehmann estimator near 8;;, = 0. This choice
makes sense since the constraint F,,(M) on the function “forces” most of the 3;; to be
small. We focus on the choice C'(j) = v/J. The first theorem describes the behavior of TW
when p, ¢, s are known. An adaptivity result for unknown p, ¢, s appears in Section 6.

As before, let ¢ = sp — (p' — p)/2. In the statement below, the notation 2/(") ~ ¢(n)
means that j(n) is chosen to satisfy the inequalities 2i(n) < g(n) < 2J(m)+1

Theorem 3 Let p' > pV 1,s —1/p > 0. Suppose that
Fopg(M,T) = {f € Fopy(M) : suppf C [-T,+T1}
If C(j) = \/j, there exist constants Cs = Cs(s,p,q, M) and Ky such that if

2i1(n)  ~ (n(logn)”,%”l{ezO})1_za

20(")  ~  (p(log n)~He<0})a/s’
and K > Ky, then
Cs(log n)(1=¢/sp)ar’y —av’ e>0
sup  Ef[TW = flit <3 Csllog )12/ (lesmyn’ ¢ = (10)
F€Fpq(M.T) Cs(logn/n)>? e <0.

where xt = max(z,0).

Remarks. In the case € < 0, the rate is sharp: the bounds in Theorems 2 and 3 agree. In
the other cases, the power of n is correct, but an extra logarithmic term appears (as it does
also in the work of Nemirovskii).

The logarithmic term does not appear in the case p’ = 2 studied by Donoho-Johnstone,
and we show in the next section that we can modify C(j) so as to obtain the analog of
their result when p’ = 2. The modification has two disadvantages: firstly C'(j) is implicitly
specified and is hard to calculate, and second, it depends strongly on (p, s,q,p’). Thus it



will not be of use in the final section, where we construct adaptive procedures. However,
adaptive rate optimal procedures can be constructed in the Gaussian case using Stein’s
unbiased estimate of risk to choose thresholds (Donoho and Johnstone, 1993) and it is
natural to conjecture that the argument could be extended to the density case also.

It is also of interest to look at the exponent of this extra log term. In case of € > 0, it is
strictly better than ap’ and is independent of ¢, but if ¢ = 0, we see that we have an extra
term in addition when ¢ sufficiently large. It turns out (Donoho, Johnstone, Kerkyacharian,
Picard, 1993) that this extra term is actually sharp, since the lower bound of Theorem 2
can be improved to contain it, at least in the Gaussian white noise setting. Of course the
constant C5 depends on p, ¢, s, p" and blows up for ¢ — 0 or ¢ — i—{j, which accounts for the
discontinous nature of the results as presented here.

The number of levels used is proportional to log, n: indeed j1(n) ~ (1 — 2a) log, n and
Jo(n) ~ (a/s')logyn. In particular, we note that ji(n) < jo(n) unless p’ = p,e > 0, in
which case Theorems 1 and 2 show that the linear estimators considered in the previous
section are optimal. Thus we will exclude this case from the proof that follows.

The condition of compact support is not necessary. It is easy to show that it can be
replaced by a domination condition of the following type:

(C) Ir > 1, Jw : R — R symmetric, non-negative, decreasing on R¥, ||wl|1/, < oo such
that Ja for which f(z) < w(x —a), Va € R.

Nevertheless, we do not know if the result is still true without any further condition at

all on Fy,,(M).

PROOF OF THEOREM 5. PRELIMINARIES.

Moment bounds. We recall the following result of Bretagnolle-Huber [BH]: Let Y3,...,Y,
be i.i.d. random variables with EY; = 0, EY* < 02, |Y;] < A. Then there exists ¢,, such
that:

0.2Am—2 oM
nm—1 nm/2

ifl1<m<2 |, E|n_IZYZ'|m < oMM,

itm>2 E|n_IZYZ'|m < el

) (11)

Back in the density estimation setting, let Xi,..., X, be an i.i.d. sample from a dis-
tribution with bounded density f, and let ¢ € Ly(R) be bounded with [¢* = 1. Define
gir(x) = 22g(Xa — k),

Yk = /gjk(x)f(w)dl' , Ap=nT" igjk(Xz’)-

Now apply the Bretagnolle-Huber inequalities to ¥; = ¢;1(X;) and set

A=2||g|2?, o* < / l9*(z = k) f(x/27)dz < |[f1]sollgl3 = 1S ]loc-
It follows that there exists a constant ¢,, depending only on m such that

EFje = yinl™ < end 1A%+ 11 oo (2l]glloc) =22 (12)

for all 7 if 1 <m < 2, and as soon as n > 27/ for m > 2.
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Now it is easy to show that if f € Fy,, (M), then

"t

1110 < (1= 27" T, (F) < M(L—27"7) 17 (13)

s'oogq

where s”" =s—1/p>0and 1/¢+ 1/¢" = 1. Consequently, when f € F;,,(M), the bound
(12) may be written
EPjk =l < conn™2, (14)

where ¢y, depends as shown at (12) and (13) on s, p,q, M, ||g||s and m.

Large deviations. The terms ep; and ey below are bounded using large deviations inequal-
ities for the event |35 — S| > (K/2)y/j/n. We therefore recall Bernstein’s inequality:

If Yi,...,Y, are ii.d. bounded random variables such that EY; = 0, EY:? = o% |V;| <
||Y||oo < 00, then

ni?

(0% +|[Y]|A/3)

Applying this to Y; = v — Etb;1(X;) and noting that o® < ||f||c < M, we conclude that
if 2/ < n, then for all v > 1, there exists K = ¢(M, 1))y such that

P{1Bjx = Biel > (K/2)/j/n}y <277, (15)
For example, the choice ¢*(M,~) = 2||tb||.o M suffices if |[t)]|.o > 1 and M > 2|[¥)|] .

P(In™" 3 Yil > ) < 2exp(— )-

Norm inequalities. We begin with some useful inequalities for L,-norms (p’ > 1) of a
(random) function

f= Z():ijk%‘k-
a ok

Using the inclusions By a2 C Ly and Lemma 1, we have, for 7 =p' A2 > 1

io
fIE < CP(ZHD]‘fH;/)p/W (16)
J1
|D;flI < CPie DS f (17)
k

Here, and throughout, ' denotes a constant that is not necessarily the same at each
appearance. Define

Jo omax(joni17)  ~ = ()
S(y) =S92 < G 18
=y | G 1 1s)
From (16), and setting a = p'/(p’ — 2), we may derive the bound
- CP' 50 9i(e' 2= S I fo P 1<l < 2
BIFIE < g gagornc yon sfironre = e LSS g
7' S(Ba) Y2 Y Elfl" p > 2

11



The first inequality is immediate from (16) and (17). When p’ > 2, we first apply Holder’s
inequality in (16) to obtain

R . Jjo e oo Jo o .

(SN IR 2 < (3520910281 §50mitv 2 p, i (20)
7l 7l

Combining (20) with Lemma 1 yields the second inequality in (19). If we adopt the purely

formal convention that S° = 1, then the second inequality in (19) with 8 = 0 reduces to
the first, and so with this convention, we use (19) for all p’ > 1 below.

COMPLETION OF PROOF. The estimator TW in (8) has two parts: a linear piece Ejl(n)
and a detail term D;, ;.. Along with a corresponding decomposition of f this yields

Ef|[TW = f1[5 < 37 "N EH By ()= Eiy oy SN+ Ef 1Dy jo— D jo FIE A1 = Eiouy f115)- (21)
where

Bife) = [ onln)sine) fy)dy

kEZ

Dyn(e) = [ 303 alulvele) ).

j1 k€Z

The third and first terms in (21) are easily estimated. We start with the approximation
error. Using the second or fourth characterizations of Besov spaces and the Sobolev em-
beddings B,, C By, it is easy to see that

I = Ejoo fII% < C(s, g, M)27 005, (22)

From the choice of jo(n), this bound has the rate of convergence specified in (10) if € >
0,p =p;ore=0,p /2p < 1/q; or ¢ <0 and is negligible otherwise.

We turn now to the linear term Ef||Ejl(n) — Ej1f||£:. Using Lemma 1, (14) and the
compact support of ¢, this term is bounded by

, 20 ()
— ajy il < Can(T + A)(—)"7, (23)

0 p2]1
10,11 -

kezZ

From the choice of ji(n), this bound has the specified rate of convergence if ¢ > 0 or
¢=0,p'/2p < 1/q and is negligible otherwise.

To decompose the details term, define

By={k: |pul> K \fijn}, & =5
B; ={k: |Bjx] > K/2\/j/n}, S;= B
B;:{k |ﬂ]k|>2]ﬁf«/]/n}7 S;:B;c

12



We may then write

Diiof = Djinf = T8 LB =By [[{k€ B;nS;} + I{ke B;n B}
+ 30 5% Birthie [[{keS;nBi} + I{keS;nSi}]
= €ps Tt epp F €5p F Egs.

For the term eps, we set fjk = |B]k — ﬂ]ku{k - B]S]} Clearly B]‘S]‘ C D]‘k = {|B]k —
Bkl > (K/2)y/j/n}, the large deviation event studied in (15). We first calculate using this,
Holder’s inequality, and (14) that

Zk:E|fjk|p/ < Zk: E{|Bi = Bixl”', Dix}
< Zk:(Eij — Bl P(D )
< (T + ZA)n_p//QZj(l_W/T/).
Applying (19) gives
Elless|[t < C7 - ™/ - §(Ba)" P S((1 = B)pl [2 = 4 /1), (24)
Using the notation of (18), we note that (when p’ > 2)
S(Ba)"S(b) < cgacbZ(m"'b)js, ra=p'/2

where j; = j1(n)if a,b < 0 and j; = jo(n) if @, b > 0. Since v can be chosen arbitrarily large
and the choice of [ is free (when p’ > 2), we may arrange that the appropriate arguments
of S(+) in (24) (i.e. both when p’ > 2 and the second when 1 < p’ < 2) are negative. Thus
for p' > 1,

Ellen]ll, < 0240123012

For any choice of v > 0, this bound is smaller than the linear term in (23) and so is
asymptotically negligible.

For the term ey, apply (19) and (18) to fjk = B l{k € 5}3;} Again SjB; C Dj; and

so using the large deviations bound and the inclusion By, C By,
SCE[fl” < Y IBwlP P(D) < 185527
k k
< O||fIBn 27 21, (25)

Thus

!

CS(Ba) &V S(—p (B2 + &) — 4)M?
9~ (n)(w+5’p’)7 (26)

Bllealll) <
<

after choosing 8 and v as described for e;; and exploiting the embedding By oo C By oo-
This term also is seen to be negligible by taking =~ large. For example, the choice v =

13



Yo = (a/(1 = 2ar) — ¢")p’ makes (26) of exactly the same order as (22). The constant Ky in
Theorem 3 may then be taken as ¢(M, )7, specified in (15).

For the term ey, apply (19) to fjk = |B]k — B I{k € Bij}. In this case, using (14)

o ! ' 2
mewstﬂ”Z|m/¥ 21)
k kEB
< ClBlE j —p/2,,—(p'=p)/2
< C|IflIp,..2” i(sH1/2=1/p)p j=p[2) = ('=P)/2,
— SpoO

In the case € # 0, we have, as before from (19) and (18)

5By S(—— By f2)

C {2115 e>0

Ellen|

IA

< .
— np'-p)/2 | 270¢ ¢ < 0.

Comparison with the bound (29) below shows that these powers are negligible. In the case
e = 0, we have

(jo — j1)®'—2)+/2 Jo P

EHebeg/ s OMY n(e’-p)/2 ,
7
(p V2—p)/2
pJ
< oM n(e’=p)/2 7 (28)

since jo(n)/j1(n) ~ p'/(p' — 2) in the case when p' > 2.

Finally, we consider the important and rate determining case ez, in which fjk =

Birl{k € SJS;} When p' > 2, instead of (20), we use (17), and obtain the sharper
inequality

Z||D]f||129’ < CZQ“ YOS Bl )
i

keS’

< C(ZK)QM? p'=p) ZQJ (1-2/p") (j/n)(p’—p)/p'||5],||Z2)p/p’7

J

! ! . . . l
where we have put |3;x|” = |B;x[P 77| 3;1|7 and noted that & € S} implies |3;;| < 2K (j/n)2.

Now st 7; = 2EHAUD|G L« since £ € Fyy(M), [1lly < T, (/) < M < o0. Using
(16), we obtain

y ' Jo
! Joyp=p Iy ie [
Blles|ly, < C(g) p (Z|7j|2p/p2 ge2/v'ye' /2

7

(O ||, gmaxmioe—idk ¢ £

Jo,p=p 0o 2

< C() { Bty (29)

17115 Jo e = 0.

14



where for € = 0, we have used monotonicity of [,(Z) norms and Hélder’s inequality, accord-
ing as ¢ < 2p/p’ or ¢ > 2p/p’. That these rates correspond to those announced in Theorem
3 follows from the definitions (9) and the equalities

(P —p)/2+e(l—2a) =ap  ife>0,
(0 = p)/2 4 eafs =ap  ife<O.
When 1 < p' <2, we have from (19) that

Jo
Elless|lt, < €7y 200270 N g
J1 keSj'
Jo (p'-p)/2 & —J€ | |P
< oS i
7

where v; is as above. Arguing using monotonicity of £,(Z) norms, etc. as above, we obtain

ooy IR e
E||ess||£/ < C(g)(p P { ||,7||pj(()1_p/q)+ e=10 |
’ .

5 Quadratic loss and Gaussian approximation

We turn now to the specific case of squared error loss, p’ = 2. In this case, we can
exhibit estimators having the exact rate of convergence described by the lower bound of
Theorem 2. The approach is via white noise approximation, taking advantage of the results

of Donoho & Johnstone (1992).
We begin by recalling the Gaussian white noise model in sequence space:

yjk:(gjk+52jk ]:07177k2071772]_1 (30)

where zj; are ¢.i.d. N(0,1) and 6 = (6,1) is unknown. Suppose that it is desired to estimate
6§ with squared error loss ||6 — 0||3 = >(0;x — 6,1)? and it is known that § € O, (M) =
{0 :1|10]]5,p,y < M} where, in this section,

101120 = 2227 11021, (31)

70
and s = s+ 27" —p~' |[0,]]F = 2 110;1]P. From Donoho and Johnstone (1992), it is
known that

Ry (on™2,0,,4(M)) ~ 7 (on™ %) (Mo? [n)*/ 4D (32)

where ~(g) = y(&; 8, p, ¢, M) is a continuous, periodic function of log, £ with period 1.

We recall also that co-ordinate-wise threshold estimators can be chosen to be within
a bounded factor of being asymptotically minimax. Define a soft threshold rule 0> by
{8s(ysmy Aj)y 7 =0,1,...,k=0,1,...,2/ —1}. Then DJ (1991) show that in model (30),

there exist absolute constants Aj,,, such that

inf  sup Eé’“‘éA - ‘9”2 < AquRR,(g, ®sm(M))(1 + 0(1)) (33)
A=(A;) @,pq (M)
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Theorem 4 Suppose that cither p > 1 and s > p~! or that s = p~', p > 1. Then there
evists o = o(s,p,q, M), ¢ = ¢(s,p,T) and Cg = Co(s,p,q, M) such that

inf sup  Eyllf — I3 < CaRy(on™%, 0., (eM))(1 + o(1)). (34)

Jn Fopg(M,T)

Estimators of the form (42) below attain the bound, for choices of j1,j2 and {\;} to be
described below.

The following approximation lemma is the basic tool in bounding the density estimation
risk by a corresponding white noise model risk. It is proved in the appendix.

Lemma 2 Let the i.i.d. variables Yi,---.Y, satisfy EY; =0, EY? = 1,|Y;| < M and set
Sp = >1Y;. Then there exist absolute constants ¢y, cy and a standard Gaussian variable 7
such that whenever M?*n=! 10g3 n < e,

E(n~Y28, — 7)? < e;M*n™t, (35)

The following lemma, also proved in the appendix, describes a bound on the risk of soft
threshold estimators in the Gaussian white noise model as the noise variance is increased.
This will be used to bound a heteroscedastic model by a homoscedastic one.

Lemma 3 Let Ejs 2 denote expectation when Y ~ N(5,0%). If o < &, then

Eﬁ,cr2 [55(Y7 )‘) - 6]2 < 2Eﬁ,62 [55(Y7 )‘) - 6]2 (36)

To apply the lemmas, fix (j, k) and note that Bjk has mean f3;; and variance n_lafk,

where ¢ = o3,.(f) = Vars;x(X). We use Lemma 2 to construct an approximation 4
having an eract Gaussian distribution with the same mean and variance. To this end, let
Yi = (¥x(X;) — Bjk)/0ojk, and note that |Y;| < 2||¢||m2j/2/ajk = M, say. We construct
Yik = Bk + n_l/zaijjk by the following recipe.

Firstly, if 07, > 4|||2,27 log® n/cin, then use Lemma 2 to construct Zjj, and note that

Ty= BBy —4i)* = nlobEn™'2S, — 7] (37)
4[| 2 e22n ™2, (38)

IA

Secondly, if 0%, < 4[|4||%,2 log® n/ein, then choose an independent Z;; ~ N(0,1) and
simply use the inequality

Ty < 2Var B, + 2n~lol =4n"lol, < 16| c7 2/ n 2 log® n. (39)
In either case, we have therefore for all 3, k, n
Ty = E[Bjr — 4ir)* < es2n " log” n. (40)
To apply the Gaussian approximation to Bjk = 55(Bjk, A;), we first write
[6(Biks A) = Bin]® < 208(Bjas A) = 6350, NI + 20850 A) — Bin]*. (41)
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We shall use the notation r(d,, ;o) for the Gaussian mean squared error
El6 (ﬂ—I—UZ A)—3]? for estimation of 3 from a single Gaussian observation with mean 2 and
variance o?. In addition the mapping y — &,(y, \) is a contraction: |6(y1, ) — §(y2, A)| <
ly1 — y2| regardless of the value of A. Thus,
E[By = Bl < 2E[Bje — Ainl” + 2r(8x, Binin ™ Poe).
< 242072 1og? n, + 4r(6y, Bir; onH?),
where we have used the approximation error bound (40), the variance bound (36), and o2

is any common upper bound on 0] .. For example, all densities [ € M) are uniformly

bounded, say by By, and so o3, < [4% () f(z)dx < By.

qu(

PrROOF OF THEOREM 6. It suffices to restrict attention to estimators of the form

f= Zaylk¢]1k + Z > 6 ﬂ]ka Dk (42)

J1 kezZ

where j; is a fized constant and js = ja(n) will be specified below. Thus

ENF -1 = X Elod — ajl +ZZE G ) — Bl + S S0 2
k jo+1 k
L) 4 Su) ().

Since j; is fixed L, < Cn~' is negligible. A simple maximisation shows that
sup{T,.(f) , f € Fopy(M,T)} = M?27%%

where s’ = s+ 1/2 —1/p. To bound S, (f) let S; = {k: [277k| < T + A}, employ (42) and
note that

J2 4 4
S 20 log’n < AT + A)2*2n"?log” n.

1 keS;

In summary,

Ellf = fI3 < On 43 3 w(6a. Bruson ™) + a2 n " logn + M?27% . (43)

J keSs;
Qhoose Jo so that 20071 < T+ A < 200, Using the identification 81, = S5, 7' = 7 + jo, and
Ajr = Aj_j,, the sum in (43) is bounded by
sup Z S r(85 0530/ /0) ¢ 0 € O,,(277 M)},

3'=j0 |k|<27’

which for appropriate choice of A; is bounded by Ay, Ry (on™2, 0,,,(27% M))(1 + o(1)).
Thus for ¢ = ¢(s,p, T') we might take ¢ = 25 (T + A)*.
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To complete the proof, it therefore remains to show that the cutoff j, = ja(n) can be
chosen so that the final two right side terms in (43) are of smaller order than R}, namely
n~2/(2sH) (cf (32)). A sufficient condition for this is easily seen to be
s+ 1

1 , 3
1y log,n << ja(n) << Y log, n — §log2 log, n (44)

S

where a,, << b, is to be interpreted as b, — a,, — oo. In turn, a sufficient condition for this
is that s < (s+1)(s+27*—p~!), which is certainly satisfied if p > 1 and either s = p~! < 1
or s > p_l.

6 Adaptation results

This section shows that a slight modification of TW renders it adaptive, in the sense that
it either exactly or approximately achieves the rates of convergence of Theorem 3 without
the need to specify s, p, ¢. Fix an integer ro and define a class

S={(s.p,q): (1/p) <5 <ro,p <p',1 < ¢ < o0}

The modification, denoted ATW | is obtained from compactly supported and (ro+1)—
regular functions ¢, in (8) simply by specifying C'(j) = v/J as before, and

971(n) ~ 1/ (14270) , 950(n) ~ n/ log n.

The constant K is chosen as ¢(M,¢)p'ro. Thus, ATW is constructed from TW by max-
imising over S the range of levels j over which thresholding occurs in (10).

Theorem 5 Suppose that Xy,..., X, are i.i.d with density f of compact support contained
in [=T,T], and belonging to some class Fipo(M,T), where (s,p,q) € S. If p" > 1, then for
all (s,p,q) €S, there exists Cr(s,p,q, M) such that

Cr7(log n/n)>’ e#0

Cr(log n)®"/277/D+ (log nfn)?" € = 0. (45)

BT - 11y < {
Remark. Although the estimator does not depend on (s, p, ¢), it is not fully adaptive, since
its specification still depends on M and p’. A fully adaptive estimator is possible in the
Gaussian white noise case, see ([DJKP]).

PrOOF. We modify that of Theorem 3. Consider f € Fj,,(M) and define indices j;(s, p, ¢)
by
2j1(s,p,q) ~ (n(log n)—[{e>0})1—2a 7 2j0(s,p,q) ~ (n(log n)_I{ESO})a/SI_

The index j1(s, p, q) differs only slightly from that used in Theorem 3, which will be denoted

Ji (s, p,q).
On Fy,,(M), the linear and bias terms have rates of convergence no worse than TW:

271(n)

~ o’ ,/2 2jf(5,p,q)
Ef||Ej1 - Ejlf”p’ < C(T)p < 0(7

p'/2
—)

Ef||E]0f — f||£: < CZ—jo(n)S’p/ S 02_j0(57p7q)5/p/

18



The asymptotic behavior of the large deviation terms eg, €y, is treated exactly as for
TW: for v > vo(s,p,q) = (a/(1 — 2a) — §')p' they are bounded by €270’ In view
of the choice K = ¢(M,)p'rg, it suffices to verify that vo(s,p,q) < ro over S. For € > 0,
Yo = s — s <rg, whereas for € <0, v =2s'/(p) =2) <1/p—1/p =s—5 <rg.

For e,,, we use a decomposition

i1(spg)  Jo(spg)

Z + Z + Z Z 6jk¢jk = €450 T €ssb T Esse-

n(spa)  Jolspa) keS;ns,

The second term is of the form studied in the proof of Theorem 3. When e < 0, the value
of 71 plays no role asymptotically, and so the first and second terms may be combined and
bounded as in Theorem 3. The third term is bounded as in (22), ||essc||£: < CP'9dolspa)s’y!,

When € > 0, the value of j5 plays no role asymptotically, and so the second and third
terms may be combined and bounded by (29) as in Theorem 3. The slightly different choice
of j; made here leads to a bound in terms of (logn/n)**". For the first term, we have

J1(spq) 71(spq)
1 2—-1 1 2—-1 ”
Bllessallyy < Y 20072200 15, < 37 200721009108 g ﬁ

N N

logn

241 (spq) 4
]I(SPQ) S C( )oz‘
n n
The behavior of the term ¢ is a little more delicate. We look first at the case ¢ < 0,
which, as noted earlier, arises only for p’ > 2. Applying (19) for 3 = 0 with (27) gives

1 . . ' _ 2 n
Ellenlly < C” (o = )= 2en p/QZQN/Z Dy ﬁ]kﬁm
k

. p1
< Cp’(]_o)(p’—pl)/Q [SUP Zj(p/_Q)/zleﬂme]

n J

<

We choose p; € (p,p’) so that (p//p1)—1 = s+1/2—1/p; this choice also yields (p'—p1)/2 =
ap’. Since ||3;]], increases as p decreases,

’ ’ ] an' i . logn an'
Blewl 5 < O/ ()7 |l < 7 M7 (227
When € > 0, we decompose
(spq)
e = Z -I-Z Zﬂyk @k%k]{kEB N B;}
J1 si(spq) kK
= €pba T Epbb-

The term ey, 1s bounded exactly as in the previous section since the upper limit jo does
not affect the estimate. For the term ey, we exploit (19) along with (23) (applied to 3
instead of &j; ) to conclude that

) / ) Jj1(spq)
Ellewa [ < CP'S(Ba)P2 0+ 3 27 fﬁp/Zcbh(T+A)(n)p/2
i
] 2j1(qu) 1] 1] !
< (Or (7)p/2§0p n=" . 1
n
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7 Appendix.

7.1 Characterizations of Besov spaces

We list here three further characterisations of Besov spaces. The first explains their role in
linear minimax theory, the second their importance in approximation theory. The third is
the most usual definition in terms of modulus of continuity.

1. Minimax viewpoint . Let V be a set of densities incluced in a ball in L,. We recall the
definitions and notations of Section 3 for linear estimators. In particular, let £',1 = 1,2 be

the kernels (4) and (5), and let E]l(f) = fE;(x,y)f(y)dy.

Theorem 6 ([KP 1992b]) Let 2 < p < oo, and suppose that V is a set of densities
contained in a ball of L,(R) such that

(1) There exists Cy > 0,5 > 0 such that for all n,

inf sup Ey||f — f|[} > Con™ 5%, (46)
JEF feV
where F, is a set of estimators based on Xq,..., X, containing at least the class of

linear estimators.

(2) There exists a kernel E' with k integrable, or E* with ¢ localized and sufficiently
smooth, and a sequence j(n) such that (forl =1 or2)

sup Ef||E§(n) — fll; < O™+, (47)
fev
Then V is included in a ball B of Bspoo, and the problems have the same complexity: (46)
and (47) hold with V replaced by B.

To paraphrase the theorem: sets where linear estimators attain the minimax rate are
contained in B, , -, balls.

2. Approximation theory.

Theorem 7 ([Pe/,[KP 1992¢]) Let s > 0,1 < p < 00,1 < ¢ < oo. Suppose that s is not
an integer and set N = [s]. Assume that

(E') [ k(z)|z|*dz < oo, and
/l’jk(l’)dl‘:@‘p j=0,....N

(E?) (a) For all u, |¢(u)] < ®(|u]) and [ ®(x)|z|*dr < co. (b) 6NV exists and satisfies

ST oW (@ — k) <M forallz€R

kezZ
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Then f € Bs,, if and only if
f €Ly, and ¢;=2"||Ef — [ll, € ,(NV). (48)

This characterisation in terms of approximation rates is one of the most important
properties of Besov spaces. For example, condition (48) is necessary but not sufficient for
membership in the classical Sobolev spaces.

3. Modulus of continuity (cf [BL], [M]). Suppose that 0 < s < 1, 1 < p,q < oo, and set

mf(x) = f(z = h). Set
Tl f) = (A(U@%%@gq%ﬁ”q

75poo(f) _ Sup”Thf_pr.

heR |h|®

In the case s =1, set

- 7 f + 7onf — 2f11, )" db )"
ealf) = (4( 7] ) Eﬂ

_ S + 7-nf =211l
71p00(f) - heg |h| :

ForO0<s<Tland 1l <p,q<oo,set By, ={f€ L,:7spy <0}, equipped with the norm
1 Flspy = I F1lp 4 Yepg(f). For s > 1, set s =n+a, withn € N and 0 < o < 1. Let f(™)
denote the m—th derivative of f, and set f € B,,, whenever f(™ ¢ B,,, for all m < n.
This space is equipped with the norm

[ lspa = |1 f1lp + Z 75pq(f(m))-

m<n

Remarks. (1) It is easy to see from the definitions that Bs.1 for s > 0 and Bse, for
s> 0,g > 1 are contained in the space of bounded continuous functions.

2. There are other characterisations of Besov spaces (for example as Lions-Peetre inter-
polations of Sobolev spaces, or using Littlewood-Paley decompositions, cf [P], [BL] ) that
we will not need here.

7.2 Lower bound for linear estimators.

We consider a subclass of densities:

‘N/j = {go0 + Z Ak, A < T(g58,p, M)}

keK;

Choose v > 0 such that fi = go + v¢jx and f, = go — v jx belong to ‘N/J
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Lemma 4 Suppose that f1 is such that EffL(:L') < oo forall f e ‘N/J and x € R. Then
0 A . R
29— [Erfu(x)] = By fu(x) — Ep fr()
Ok
Proor.

By fulw) = By fu(e) = Y0 Bf T Xo) - Ef/T<XZ,x—2v/ZT o0 )(y)dy

=1

On the other hand, in ‘N/j,

EffL Z/T Yy,x gO +Z)‘]k¢]k

and
a ~ n
o Prfule) = [ ST )iy

=1

This establishes the lemma. 1 )
Let us observe that neither —[EffL( )] nor aj; = fai—k[EffL(x)];/)jk(x)dx depends

on the choice of f € V]
We apply an L, version of the Cramer-Rao inequality in the model in which Xy,..., X,
is an i.i.d. sample from f € V;, = Xj; and

T = /fL(l’)@/)]k(l')dl' = ééjk.

Indeed,

0 .
%E@T E@TL < (sup |L|) . E19|T|7

where

_ L J Yirle)
L = Zfe( ) fé’( ) Z f@(l’i)7 d

L] < nll¢lle/C.

Thus for p’ > 1,

Eq|T|” (Eo|T))"

>
Z C|Cl]‘k|p/n_p//2. (49)

Observe now that if D; = E?,, — E? (namely, projection on W), then,

/e = Il 2 apllDi(fz = )]y

for some constant a,s, and hence, from Lemma 1

El|fr, — b > al, 257V E S |y, — Al (50)
k
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Recalling now the definition of the pyramid P; from the proof of Theorem 2

N A 1 1 A /
R(fr) =  sup  Ef|lfr— flI% > Efllfr = fI1%
( ) fE}—qu(M) g 8 CELI’d ,Pj fgj ’ ’
> 27U N B 1 — fells + Bl fe — FIE
kEK;

> a5 270 SIS By

EEK; kek,
k'#k

+Eqp bk — 41" + Epldge + 47} (51)

il + Eg

using Lemma 1.

But
Eplaj — " + Eplage +917 = [Epép — " +[Epdu, + )
> 27V By G — Egdge — 297
= 29 |aj — 1]7". (52)

using Lemma 4.

Using (49), (51) and (52), we obtain

w/ . p_/_ ' ' ot '
Ry(f1) 2 Cap2 57037 A a1 4+ 30 30 07 Plajul”}
keK; kEK; k'#k
keK;
The double sum collapses to (29 — 1)n""/2Y" |a;|?', and after setting v = (29 — 1)n=?"/2,
we have ,
L 1 9ip' /2, —p'[29=] ' v 2 p'/2
Ry 2 a2 PPy (lag, — 17 A+ lagi|”) = e =)
kEK, n
Recall that v was constrained to be at most I'(j; s, p, M), which, since s > 1/p, amounts
to requiring that v < (M/Z)Z_j(5+15_113). To maximise the lower bound subject to this
constraint, equate 2/n"/2 and 9=+ 375)7" This leads to choosing j so that 2/ =< n!/(14+25)
where 8" = s — 1/p+ 1/p'. It follows that
2] ! S/P/
22 T T
Eyr<n

which establishes the first part of Theorem 1. 1

7.3 (Gaussian approximation for quadratic loss.

PrOOF OF LEMMA 3. Let us first note some easily verified properties of soft thresholding:
EL) fOI’ﬂ,Z>O, |5S(6_Zv)‘)_6|2|5S(6+27)‘)_6|7

b) for 3 >0, z — |6,(8 —z,A) — 3] is increasing for 0 < z < 0.
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That is, negative disturbances yield bigger errors than positive disturbances of the same
size, and the error is monotone in the size of a negative disturbance.

Write X = 8+ 0Z for Z ~ N(0,1), and drop explicit reference to A and s. We now
apply these properties in turn:

Egol6(X) =81 = E{(6(B+07)=B)"7Z <0} + B{(6(B —0Z) = B)*, Z > 0}
2B{(8(8 + 0 Z) — B)%, Z < 0}

2E{(5(6 +0'7) - B)%,Z < 0}

o [8(X) = 8]

Remark. Although the constant 2 in the statement of the lemma is not sharp, it cannot
be reduced to 1, as may be checked by explicit calculation with # = A and ¢ varying from
0 to oo.

IA A A

ProoF or LEMMA 2. We adopt the following conventions: the notation x, = y, + 0r,
means |z, — y,| < r,; that is, § € C satisfies |#| < 1 and may differ at each occurrence.
Secondly ¢y, g, - - - denote absolute constants.

1°. It suffices to assume that the distribution function of the X; is absolutely continuous.
If not, let U; be i.i.d uniform and independent of {X;} such that FU; = 0, EU? = 1. The
variables Y; = X, cosa + U;sin @ have absolutely continuous distributions with mean 0,
variance 1 and bound M(l + «). Construct Z by applying the proposition to S = 31V,
Since E(S} — S,)* < na?; the choice o = n ~1/2 ensures that E(n‘l/QSn — 7Z)? < 2a* +
2, M*(1 + a)*n 1§c]\42 -1

2°. Let F), denote the distribution of W, = S, /y/n. Since this is absolutely continuous,
the quantile transformation Z = ®~!(F,(W,)) yields a standard Gaussian variable (here
¢ denotes the distribution function of an N(0,1) variate). We show that Z has the desired
approximation by considering in turn large, moderate and small deviations, defined respec-
tively by sets Ay = {w : Jw| > Valogn}, Ay = {1 < |w|] < Valogn} and As = {|w| < 1}.

Indeed, we write

EW, -7} = E{W,—2)|W,| > \/alogn}—l—/ [w — &7 (F,(w))]* F(dw)

AsUA3

3°. Small deviations are easily handled by the Berry-Esseen Theorem, which implies
that |r,(z)] = |F,(z) — ®(2)] < Cpn~2 < CMn="? since p = E|X,]?/(EX?)%? < M.
According to the mean value theorem
'
]</ Y dw) < esMPnt, 54
* = Py ) S M (54
since u*(w) lies between w and ®~*(F,(w)), and the latter is bracketed by ®~'(®(w) +

C'Mn~"/%), which in turn is bounded by an absolute constant in view of the assumption on
M?*n—1 10g3 n <g¢.
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49, For large deviations, first use Holders inequality to write

L < e B\W, [P+ E|Z1P)*3 PY3{IW,| > \/alogn}. (55)

Now use Bennett’s inequality (see for example Pollard, 1984) to bound

P <|Sn| > 1/anlog n) < 2exp{—(1/2)alognB(M+/an~'logn)} (56)

where the function B(A) = 2A72[(1 + A)log(1 + A) — A] is continuous and decreasing on
[0, 00] with B(0+) = 1. By hypothesis, M*n~'logn < ¢, and so the right side is bounded
by

Zexp{—%B(\/cl_a) logn} < 2n7° (57)

so long as we choose a large (= 10 say), and ¢; small enough that aB(\/cia) > 6.
Finally, the Bretagnolle - Huber bound (11) shows that

EW, > < es(1+ Mn™'%) < e5(1 4 %), (58)

and hence that [; < eq(es + E|Z|3)2/3 213 =1 = ¢y n L.

5°. For moderate deviations, it is sufficient, because of symmetry, to focus on

1/2

= [ e e B ), (59

where ® =1 — &, F, = 1 — F,,. We exploit the following Lemma, whose proof we omit.
Lemma 5 Ifz > 1 and |F/®(x) — 1| < e™/2, then
[0 — &7 (£(2))] < @£/ @)(x) — 1 (60)

We use also a uniform version of the classical moderate deviations bound based on the
Cramer series ( cf. Feller (1971), Petrov (1975) ). The version we use, due to Sakhanenko
(1991), does not require explicit knowledge of the Cramer series y(x). It is phrased in-
stead in terms of the Lyapunov exponent L(h) = Y7 E|Y;|> max(e"¥i 1), which may be
conveniently bounded in our application.

Proposition 2 (Sakhanenko, 1991) Let W,, = >_1Y; be the sum of independent, mean zero
random variables, VarW, = 1. Let « >0, and F,, = P(W,, > ). If

162L(22) < 1, (61)
then the Cramer series y(x) is well-defined and satisfies

N ()]
e (2) — ()|

2’ L(27) (62)
32L(2x)¢(x). (63)

IA A
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In our application, ¥; = X;/\/n are bounded by Mn="/? and so

/2

L(h) < Mp~" /2™ (64)

The restriction 1 < = < y/alogn implies that Ma®n="/? and hence Man='/? are both
bounded by (a®M?*n~"log®n)'/? < 103/2\/a. For a sufficiently small choice of ¢;, we may
ensure that |[Ma®n='/2| < 1/18, say, and hence that condition (61) holds.

Let R = F,(x)/®(z) and v = y(z); we exploit the bound

|IR—1| <e¥|eT"R — 1|+ |e” — 1.
Combining (62) with (64), we conclude that
| < MaPe2Men™ " < (1/18)e/? < 1/16.
From (63), we obtain
R 1] < 327 L(22) () B(x) + 2 (o).

The function v(x) = qﬁ(x)/:z;(i)(x) is decreasing in * > 0, and so is bounded below in our

case by v(1). Combining this with (62) again yields, for 1 < & < \/alogn,

cal + 2 L(2x) < cqa® Mpn 722 M2
co M (65)
es10%/2 /e < 7312,

£,/ () — 1]

IAIA A

again if ¢; is chosen sufficiently small.
Thus Lemma 5 applies also, and from (65)

(alogn)t/? ~ o~

ST B ) () — 1P (d) (66)
1

S anVV;MQn_l S 011(1 + cl)Mzn_l

I

IA

since FEW* = n™?FES? <14 M?n~' <1+ ¢;. This yields the desired bound for I and

completes the proof of Lemma 2. 1

References

[1] Bergh J., Lofstrom, J. (1976) Interpolation spaces — An Introduction Springer. New
York.

[2] Bretagnolle, J. and Carol-Huber, C. (1979) Estimation des densités: risque minimax,
7. Wahrscheinlichkeitstheorie und Verw. Gebiete 47 119-137.

[3] Daubechies, 1. (1992) Ten Lectures on Wavelets STAM: Philadelphia.

[4] Devroye, L. (1985) Nonparametric Density Estimation. Wiley, New York.

26



[5]

[10]

[11]

[12]

[13]

[14]

[19]
[20]

Donoho, D. L. and Johnstone, I. M (1990) Minimax risk over {,-balls. Technical Re-
port, Department of Statistics, University of California, Berkeley.

Donoho, D. L. and Johnstone, I. M (1992) Minimax Estimation via Wavelet shrinkage.
Technical Report, Department of Statistics, Stanford University.

Donoho, D. L. and Johnstone, I. M (1993) Adapting to unknown smoothness via
Wavelet shrinkage. Technical Report, Department of Statistics, Stanford University.

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1993) Wavelet
Shrinkage: Asymptopia? Manuscript.

Doukhan, P. and Leon, J. (1990) Deviation quadratique d’estimateur de densité par
projection orthogonale. Note aux Comptes Rendus Acad. Sciences Paris (A) 310 424-
430.

Feller, W. (1971) An introduction to probability theory and its applications. , Vol 2.
Wiley, New York.

M. Frazier, B. Jawerth, and G. Weiss (1991) Littlewood-Paley Theory and the study of
function spaces. NSF-CBMS Regional Conf. Ser in Mathematics, 79. American Math.
Soc.: Providence, RI.

Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1992) Estimation d’une densité
de probabilité par méthode d’ondelettes. Comptes Rendus Acad. Sciences Paris (A)
315 211-216.

Kerkyacharian, G. and Picard, D. (1992a) Density estimation in Besov Spaces. Statis-
tics and Probability Letters 13 15-24

Kerkyacharian, G. and Picard, D. (1992b) Density Estimation by Kernel and Wavelets
methods - optimality of Besov spaces. To appear in Stat. and Prob. Letters. Technical
Report, Université de Paris VII.

Kerkyacharian, G. and Picard, D. (1992c) Linear Wavelet Methods and other periodic
kernel methods. Submitted. Technical Report, Université de Paris VII.

Meyer, Y. (1990a) Ondelettes. Paris: Hermann.

Nemirovskii, A.S. (1985) Nonparametric estimation of smooth regression functions.
Izv. Akad. Nauk. SSR Teckhn. Kibernet. 3, 50-60 (in Russian). J. Comput. Syst. Sci.
23, 6, 1-11, (1986) (in English).

Nemirovskii, A.S., Polyak, B.T. and Tsybakov, A.B. (1985) Rate of convergence of
nonparametric estimates of maximume-likelihood type. Problems of Information Trans-
misston 21, 258-272.

Peetre, J. (1975) New Thoughts on Besov Spaces. Duke Univ Math. Ser. 1.
Petrov, V. V. (1975) Sums of Independent Random Variables. Springer, New York.

27



[21]

[22]

23]
[24]

[25]

Pollard D. (1984) Convergence of stochastic processes.Springer. New York.

Sakhanenko, A. L. (1991) Berry-Esseen type estimates for Large Deviation Probabil-
ities. Siberian Mathematical Journal, 32, 647 - 656. Translation of Sibirskii Matem-
aticheskii Zhurnal , 32 (4),133-142.

Scott, D. W. (1992) Multivariate Density Estimation. Wiley, New York.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London.

Walter, G. G. (1990) Approximation of the Delta function by wavelets. Preprint, U.
Wisonsin - Milwaukee.

28



